Hostname: page-component-7c8c6479df-8mjnm Total loading time: 0 Render date: 2024-03-28T15:32:21.873Z Has data issue: false hasContentIssue false

Structure and Composition of Luminescent Laterally Anodized Porous Si

Published online by Cambridge University Press:  15 February 2011

K. H. Jung
Affiliation:
Microelectronics Research Center, Department of Electrical and Computer Engineering, The University of Texas at Austin, Austin, TX 78712.
S. Shih
Affiliation:
Microelectronics Research Center, Department of Electrical and Computer Engineering, The University of Texas at Austin, Austin, TX 78712.
T. Y. Hsieh
Affiliation:
Microelectronics Research Center, Department of Electrical and Computer Engineering, The University of Texas at Austin, Austin, TX 78712.
J. C. Campbell
Affiliation:
Microelectronics Research Center, Department of Electrical and Computer Engineering, The University of Texas at Austin, Austin, TX 78712.
D. L. Kwong
Affiliation:
Microelectronics Research Center, Department of Electrical and Computer Engineering, The University of Texas at Austin, Austin, TX 78712.
T. George
Affiliation:
Center for Space Microelectronics, Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA 91109.
T. L. Lin
Affiliation:
Center for Space Microelectronics, Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA 91109.
H. Y. Liu
Affiliation:
Texas Instruments Inc., 13588 North Central Expressway, Dallas, TX 75243.
J. Zavada
Affiliation:
Army Research Office, Research Triangle Park, NC 27709.
S. Novak
Affiliation:
Evans East, 666 Plainsboro Road, Plainsboro, NJ 08536.
Get access

Abstract

We have made structural and compositional studies of luminescent laterally anodized porous Si. Scanning electron microscopy reveals a surface with a network of cracks, while transmission electron microscopy shows a dual porous Si structure in which the upper layer is amorphous and the lower layer is either amorphous or crystalline, depending on anodization conditions. X-ray diffraction verified the presence of the amorphous layer. Secondary ion mass spectroscopy reveals very high concentrations of H, B, C, N, O, and F in the amorphous layer. Our results indirectly suggest that the amorphous layer is primarily responsible for luminescence.

Type
Research Article
Copyright
Copyright © Materials Research Society 1992

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Canham, L. T., Appl. Phys. Lett. 57, 1046 (1990).CrossRefGoogle Scholar
2. Halimaoui, A., Oules, C., Bomchil, G., Bsiesy, A., Gaspard, F., Herino, R., Ligeon, M., and Muller, F., Appl. Phys. Lett. 52, 304 (1991).Google Scholar
3. Barbour, J. C., Dimos, D., Guilinger, T. R., Kelly, M. J., and Tsao, S. S., Appl. Phys. Lent. 59, 2088 (1991).Google Scholar
4. Jung, K. H., Shih, S., Hsieh, T. Y., Kwong, D. L., and Lin, T. L., Appl. Phys. Lett. 59, (16 Dec 1991).CrossRefGoogle Scholar
5. Lehmann, V. and Gösele, U., Appl. Phys. Let. 58, 856 (1991).CrossRefGoogle Scholar
6. Turner, D. R., J. Electrochem. Soc. 105. 402 (1958).Google Scholar
7. Shih, S., Jung, K. H., Hsieh, T. Y., Sarathy, J., Tsai, C., Li, K.-H., Campbell, J. C., Kwong, D. L., and Lin, T. L., MRS 1991 Fall Meeting, session AA1.6, Boston, USA, 2-6 Dec 1991.Google Scholar
8. Jung, K. H., Shih, S., Hsieh, T. Y., Kwong, D. L., George, T., and Lin, T. L., submitted for publication.Google Scholar
9. Beale, M. I. J., Chew, N. G., Uren, M. J., Cullis, A. G., and Benjamin, J. D., Appl. Phys. Lett. 46, 86 (1985).Google Scholar
10. Chuang, S.-F., Collins, S. D., and Smith, R. L., Appl. Phys. Lett. 55, 675 (1989).Google Scholar
11. Cullis, A. G. and Canham, L. T., Nature 3, 335 (1991).CrossRefGoogle Scholar
12. Sussman, R. S. and Ogden, R., Phil. Mag. B44, 137 (1981).Google Scholar
13. Wolford, D. J., Scott, B. A., Reimer, J. A., and Bradley, J. A., Physica 117B&118B, 920 (1983).Google Scholar
14. DiMaria, D. J., Kirtley, J. R., Pakulis, E. J., Dong, D. W., Kuan, T. S., Pesavento, F. L., Theis, T. N., Cutro, J. A., and Brorson, S. D., J. Appl. Phys. 5, 401 (1984).Google Scholar
15. Furukawa, S. and Miyasato, T., Superlattices and Microstructures 5, 317 (1989).CrossRefGoogle Scholar
16. Morisaki, H., Ping, F. W., Ono, H., and Yazawa, K., J. Appl. Phys. 70, 1869 (1991).CrossRefGoogle Scholar
17. Canham, L. T., Houlton, M. R., Leong, W. Y., Pickering, C., and Keen, J. M., J. Appl. Phys. 20, 422 (1991).Google Scholar
18. Tsai, C., Li, K.-H., Sarathy, J., Shih, S., Campbell, J. C., Hance, B. K., and White, J. M., Appl. Phys. Lett. 52, (1991).Google Scholar
19. Cullity, B. D., Elements of X-ray Diffraction, 2nd ed. (Reading: Addison-Wesley, 1978).Google Scholar
20. Fathauer, R. W., George, T., Ksendzov, A., Lin, T. L., Pike, W. T., and Vasquez, R. P., MRS 1991 Fall Meeting, session AA4.4, Boston, USA, 2-6 Dec 1991.Google Scholar