Hostname: page-component-6b989bf9dc-vmcqm Total loading time: 0 Render date: 2024-04-14T10:44:26.400Z Has data issue: false hasContentIssue false

Transition Metal Impurities in Silicon

Published online by Cambridge University Press:  15 February 2011

Eicke R. Weber
Affiliation:
II. Physikalisches Institut ( Institut f. Kernchemie)University of Kö1n, D5000 Kö1n 41, West-Germany
Norbert Wifhl
Affiliation:
II. Physikalisches Institut ( Institut f. Kernchemie)University of Kö1n, D5000 Kö1n 41, West-Germany
Get access

Abstract

The properties of transition metals in silicon are reviewed, emphasizing those observations which allow conclusions to be drawn with respect to microscopic defect models. 3d metals diffuse interstitially into silicon and stay predominantly in these sites at high temperatures. 3d elements lighter than Co can be quenched into these interstitial sites, giving rise to well-established energy levels. First theoretic calculations for these ions yield promising results. Co, Ni and Cu vanish out of the interstitial solution during quenching; an appreciable fraction of Cu may form pairs. The understanding of 4d and 5d metals in silicon is much less advanced at present, even for the technologically important elements Au and Pt. Some observations indicate that for Au and Pt pair formation might as well be important.

Type
Research Article
Copyright
Copyright © Materials Research Society 1982

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Chen, J.W. and Milnes, A.G., Ann. Rev. Mat. Sci. 10, 157 (1980)Google Scholar
2. Ludwig, G.W. and Woodbury, H.H., Solid State Phys. 13, 223 (1962)Google Scholar
3. Weber, E.R., Appl. Phys. A, in printGoogle Scholar
4. Weber, E. and Riotte, H.G., J. Appl. Phys. 51, 1484 (1980)Google Scholar
5. Wiehl, N., Herpers, U., and Weber, E., in: Nuclear Physics Methods in Materials Research, ed. by Bethge, K., Baumann, H., Jex, H., and Rauch, F., (Vieweg, Braunschweig 1980), p. 334 Google Scholar
6. Wiehl, N., Herpers, U., and Weber, E., J. Radioanal. Chem. 72, 69 (1982)Google Scholar
7. Hall, R.N. and Racette, J.H., J. Appl. Phys. 35, 379 (1964)Google Scholar
8. Bakhadyrkhanov, M.K., Zainabidinov, S., and Khamidov, A., Fiz. Tekh. Poluprovodn. 4, 873 (1970)Google Scholar
8a [Sov. Phys. Semicond. 4, 739 (1970)]Google Scholar
9. Bendik, N.T., Garnyk, V.S., and Milevskii, L.S., Fiz. Tverd. Tela 12, 190 (1970)Google Scholar
9a [Sov. Phys. Solid State 12, 150 (1970)]Google Scholar
10. Struthers, J.D., J. Appl. Phys. 27, 1560 (1956)Google Scholar
11. Kimerling, L.C., Benton, J.L., and Rubin, JJ, in: Defects and Radiation Effects in Semiconductors 1980, ed. by Hasiguti, R.R. (Inst. of Physics, Bristol and London 1981), Conf. Ser. 59, p. 217 Google Scholar
12. Shepherd, W.H. and Turner, J.A., J. Phys. Chem. Sol. 23, 1697 (1962)CrossRefGoogle Scholar
13. Ludwig, G.W. and Woodbury, H.H., Proc. Intern. Conf. on Semicond. Physics, Prague 1960, p. 596Google Scholar
14. Boldyrev, V.P., Pokrovskii, I.I., Romanovskaya, S.G., Thach, A.V., and Shimanovich, I.E., Fiz. Tekh. Poluprovodn. 11, 1199 (1977)Google Scholar
14a [Soy. Phys. Semicond. 11, 709 (1977)]Google Scholar
15. Werkhoven, C., private communication K. Graff, private communicationGoogle Scholar
16. Swalin, R.A., J. Phys. Chem. Sol. 23, 153 (1962)CrossRefGoogle Scholar
17. Millea, M.F., J. Phys. Chem. Sol. 27, 315 (1966)Google Scholar
18. Sprokel, G.J. and Fairfield, J.M., J. Electrochem. Soc. 112, 200 (1965)CrossRefGoogle Scholar
19. Bergholz, W., J. Phys. D14, 1099 (1981)Google Scholar
20. Bakhadyrkhanov, M.K. and Zainoabidinov, S., Fiz. Tekh. Poluprovodn. 12, 683 (1978)Google Scholar
20a [Sov. Phys. Semicond. 12, 398 (1978)]Google Scholar
21. Aalberts, J.H. and Verheijke, M.L., Appl. Phys. Lett. 1, 19 (1962)Google Scholar
22. Yoshida, M. and Furusho, K., Jpn. J. Appl. Phys. 3, 521 (1964)Google Scholar
23. Dorward, R.C. and Kirkaldy, J.S., Trans. Metall. Soc. AIME 242, 2055 (1968)Google Scholar
24. Thurmond, C.D. and Struthers, J.D., J. Phys. Chem. 57, 831 (1953)CrossRefGoogle Scholar
25. Van Vechten, J.A., in: Handbook on Semiconductors, Vol. 3, ed. by Keller, S.P. (North Holland, New York and Oxford 1980), p. 1 Google Scholar
26. Fuller, C.S. and Severins, J.C., Phys. Rev. 96, 21 (1954)Google Scholar
27. Gallagher, C.J., J. Phys. Chem. Sol. 3, 82 (1957)Google Scholar
28. Stacy, W.T., Allison, D.F. and Wu, T.-C., in: Semiconductor Silicon 1981, ed. by Huff, H.R., Kriegler, R.J., Takeishi, Y. (The Electrochemical Society, Pennington 1981), p. 344 Google Scholar
29. Buck, T.M., Poate, J.M., Pickar, K.A., and Hsieh, C.M., Surf. Sci. 35, 362 (1973)Google Scholar
30. Thompson, R.D. and Tu, K.N., Appl. Phys. Lett. 41, 440 (1982)Google Scholar
31. Graff, K. and Pieper, H., J. Electrochem. Soc. 128, 669 (1981)CrossRefGoogle Scholar
32. Kimerling, L.C. and Benton, J.L., Physica B, in press Google Scholar
33. Conzelmann, H., Graff, K. and Weber, E.R., Appl. Phys. A, to be publishedGoogle Scholar
34. Graff, K. and Pieper, H.,in: Semiconductor Silicon 1981, ed. by Huff, H.R., Kriegler, R.J., and Takeishi, Y. (The Electrochemical Society, Pennington 1981), p. 331 Google Scholar
35. Lemke, H., Phys. Stat. Sol. A 64, 549 (1981)Google Scholar
36. Lemke, H., Phys. Stat. Solidi A 64, 215 (1981)Google Scholar
37. Feichtinger, H. and Czaputa, R., Appl. Phys. Lett. 39, 706 (1978)CrossRefGoogle Scholar
38. Feichtinger, H., Waltl, J., and Gschwandtner, A., Solid State Commun. 27, 867 (1978)Google Scholar
39. DeLeo, G.G., Watkins, G.D., and Fowler, B.W., Phys. Rev. B25, 4972 (1982)Google Scholar
40. Zunger, A. and Lindefelt, U., Phys. Rev. B, n printGoogle Scholar
41. Hopkins, R.H., Seidensticker, R.G., Davies, J.R., Rai-Choudhury, P., Blais, P.D. and McCormick, J.R., J. Cryst. Growth 42, 493 (1977)CrossRefGoogle Scholar
42. Sauer, R. and Weber, J., Physica B, in press Google Scholar
43. Weber, J., Bauch, H., and Sauer, R., Phys. Rev. B24, 7688 (1982)Google Scholar
44. Huntley, F.A. and Willoughby, A.F.W., J. Electrochem. Soc. 120, 414 (1973)Google Scholar
45. Stolwijk, N.A., Schuster, B., Hölzl, J., Mehrer, H., and Frank, W., Physica B, in press Google Scholar
46. Lang, D.V., Grimmeis, H.G., Meijer, E., and Jaros, M., Phys. Rev. B22, 3917 (1980)Google Scholar
47. Van Vechten, J.A. and Thurmond, C.D., Phys. Rev. B14, 3539 (1976)Google Scholar
48. Kleinhenz, R.L., Lee, Y.H., Corbett, J.W., Sieverts, E.G., Muller, S.H. and Ammerlaan, C.A.J., Phys. Stat. Solidi B 108, 363 (1981)Google Scholar
49. Höhne, M., Phys. Stat. Solidi B 99, 651 (1980)CrossRefGoogle Scholar
50. Weber, E.R., Wiehl, N., Borchardt, G. and Brotherton, S.D., to be publishedGoogle Scholar
51. Borchardt, G., Weber, E., and Wiehl, N., J. Appl. Phys. 52, 1603 (1981)CrossRefGoogle Scholar
52. Ohta, K., Science of Light 22, 12 (1973)Google Scholar
53. Henning, J.C.M., Physica B, in printGoogle Scholar
54. Henning, J.C.M. and Egelmeers, E.C.J., to be publ.Google Scholar
55. Muller, S.H., Tuynman, G.M., Sieverts, E.G., and Ammerlaan, C.A.J., Phys. Rev. B25, 25 (1982)CrossRefGoogle Scholar