Hostname: page-component-8448b6f56d-42gr6 Total loading time: 0 Render date: 2024-04-23T15:20:02.061Z Has data issue: false hasContentIssue false

The $\mathbb{Z}/p$ metabelian birational $p$-adic section conjecture for varieties

Published online by Cambridge University Press:  04 May 2017

Florian Pop*
Affiliation:
Department of Mathematics, University of Pennsylvania, DRL, 209 S 33rd Street, Philadelphia, PA 19104, USA email pop@math.upenn.edu
Rights & Permissions [Opens in a new window]

Abstract

We generalize the $\mathbb{Z}/p$metabelian birational $p$-adic section conjecture for curves, as introduced and proved in Pop [On the birational$p$-adic section conjecture, Compos. Math. 146 (2010), 621–637], to all complete smooth varieties, provided $p>2$. The condition $p>2$ seems to be of technical nature only, and might be removable.

MSC classification

Type
Research Article
Copyright
© The Author 2017 

1 Introduction

The (birational) ( $p$ -adic) section conjecture (SC) originates from Grothendieck [Reference GrothendieckGro83, Reference GrothendieckGro84] (see [Reference Schneps and LochakSL98]), and weaker/conditional forms of the SC are a part of the local theory in anabelian geometry, see e.g. Faltings [Reference FaltingsFal98] and Szamuely [Reference SzamuelySza04]. In spite of serious efforts to tackle the SC, only the full Galois birational $p$ -adic SC is completely resolved, see Koenigsmann [Reference KoenigsmannKoe05] for the case of curves and Stix [Reference StixSti13] for higher dimensional varieties. On the other hand, a much stronger form of the birational $p$ -adic SC for curves, to be precise, the $\mathbb{Z}/p$ metabelian birational $p$ -adic SC for curves, was proved in Pop [Reference PopPop10]. The aim of this note is to prove a similarly strong result for the higher dimensional varieties, at least in the case $p>2$ .

For the reader’s sake and to make the presentation self contained (to some extent), we begin by recalling a few notations and well-known facts; see e.g. the Introduction in [Reference PopPop10]. First, for an arbitrary (perfect) base field $k$ and complete smooth geometrically integral $k$ -varieties $X$ , let $K=k(X)$ be the function field of $X$ . Let $\tilde{K}|K$ be some Galois extension, $\tilde{k}\subseteq \tilde{K}$ be the relative algebraic closure of $k$ in $\tilde{K}$ , and consider the resulting canonical exact sequence of Galois groups:

$$\begin{eqnarray}1\rightarrow \operatorname{Gal}(\tilde{K}|K\tilde{k})\longrightarrow \operatorname{Gal}(\tilde{K}|K)\xrightarrow[{}]{\tilde{p}_{K}}\operatorname{Gal}(\tilde{k}|k)\rightarrow 1.\end{eqnarray}$$

Let $\tilde{X}\rightarrow X$ be the normalization of $X$ in the field extension $K{\hookrightarrow}\tilde{K}$ . For $x\in X$ and $\tilde{x}\in \tilde{X}$ above  $x$ , let $T_{x}\subseteq Z_{x}$ be the inertia/decomposition groups of $\tilde{x}|x$ and $G_{x}:=\operatorname{Aut}(\unicode[STIX]{x1D705}(\tilde{x})|\unicode[STIX]{x1D705}(x))$ be the residual automorphism group. By decomposition theory, one has a canonical exact sequence

Next suppose that $x$ is $k$ -rational, i.e., $\unicode[STIX]{x1D705}(x)=k$ . Since $\tilde{k}\subset \unicode[STIX]{x1D705}(\tilde{x})$ , the projection $Z_{x}\xrightarrow[{}]{\tilde{p}_{K}}\operatorname{Gal}(\tilde{k}|k)$ gives rise to a canonical surjective homomorphism $G_{x}\rightarrow \operatorname{Gal}(\tilde{k}|k)$ , which in general is not injective. On the other hand, if $\tilde{k}{\hookrightarrow}\unicode[STIX]{x1D705}(\tilde{x})$ is purely inseparable, then $G_{x}\rightarrow \operatorname{Gal}(\tilde{k}|k)$ is an isomorphism. Hence, if the sequence (∗) splits, then $\tilde{p}_{K}$ has sections $\tilde{s}_{x}:\operatorname{Gal}(\tilde{k}|k)\rightarrow Z_{x}\subset \operatorname{Gal}(\tilde{K}|K)$ , which we call sections above  $x$ . And, notice that the conjugacy classes of sections $\tilde{s}_{x}$ above $x$ build a ‘bouquet’, which is in a canonical bijection with the (non-commutative) continuous cohomology pointed set $\text{H}_{\text{cont}}^{1}(\operatorname{Gal}(\tilde{k}|k),T_{x})$ defined via the split exact sequence (∗).

Parallel to the case of points $x\in X$ , one has a similar situation for $k$ -valuations $v$ of $K$ as follows. For any prolongation $\tilde{v}$ of $v$ to $\tilde{K}$ , we denote by $T_{v}\subseteq Z_{v}$ the inertia/decomposition groups of $\tilde{v}|v$ and by $G_{v}=Z_{v}/T_{v}$ the residual automorphism group. As above, if $\unicode[STIX]{x1D705}(v)=k$ and $\tilde{k}{\hookrightarrow}\unicode[STIX]{x1D705}(\tilde{v})$ is purely inseparable, one has: first, the canonical homomorphism $G_{v}\rightarrow \operatorname{Gal}(\tilde{k}|k)$ is an isomorphism. Second, if the exact sequence $1\rightarrow T_{v}\rightarrow Z_{v}\rightarrow G_{v}\rightarrow 1$ splits, then the projection $\tilde{p}_{K}:\operatorname{Gal}(\tilde{K}|K)\rightarrow \operatorname{Gal}(\tilde{k}|k)$ has a section $\tilde{s}_{v}:\operatorname{Gal}(\tilde{k}|k)\rightarrow Z_{v}\subseteq \operatorname{Gal}(\tilde{K}|K)$ , which we call a section above  $v$ . And, the conjugacy classes of sections $\tilde{s}_{v}$ above $v$ build a ‘bouquet’, which is in a canonical bijection with the (non-commutative) continuous cohomology pointed set $\text{H}_{\text{cont}}^{1}(\operatorname{Gal}(\tilde{k}|k),T_{v})$ defined via the canonical split exact sequence above.

Finally, if $\tilde{K}|K$ contains a separable closure $K^{\text{s}}|K$ of $K$ and hence $\tilde{k}$ contains a corresponding separable closure $k^{\text{s}}$ of $k$ , then $\unicode[STIX]{x1D705}(s)^{\text{s}}\subseteq \unicode[STIX]{x1D705}(\tilde{x}),\unicode[STIX]{x1D705}(\tilde{v})$ and $G_{x}$ and $G_{v}$ are the absolute Galois groups of $\unicode[STIX]{x1D705}(x)$ and $\unicode[STIX]{x1D705}(v)$ , respectively. Further, in this situation, $1\rightarrow T_{v}\rightarrow Z_{v}\rightarrow G_{v}\rightarrow 1$ is split; see e.g. [Reference Kuhlmann, Pank and RoquetteKPR86]. Thus, if $\unicode[STIX]{x1D705}(v)=k$ , sections above $v$ exist. In particular, if $x\in X(k)$ is a $k$ -rational point, then choosing $v$ such that $\unicode[STIX]{x1D705}(x)=\unicode[STIX]{x1D705}(v)$ , it follows that sections above $x$ exist as well, because every section above $v$ is a section above $x$ as well. We mention though that in general the bouquet of sections above $x$ is much richer than the one of sections above $v$ . Namely, by general decomposition theory, one has $T_{v}\subset T_{x}$ , and $\text{H}_{\text{cont}}^{1}(\operatorname{Gal}(\tilde{k}|k),T_{v})\rightarrow \text{H}_{\text{cont}}^{1}(\operatorname{Gal}(\tilde{k}|k),T_{x})$ is a strict inclusion in general.

Next let $p$ be a fixed prime number. We denote by $K^{\prime }|K$ the (maximal) $\mathbb{Z}/p$ elementary abelian extension of $K$ , and by $K^{\prime \prime }$ the maximal $\mathbb{Z}/p$ elementary abelian extension of $K^{\prime }$ (in some fixed algebraic closure of $K$ ). Then $K^{\prime \prime }|K$ is a Galois extension, which we call the $\mathbb{Z}/p$ metabelian extension of $K$ , and its Galois group $\operatorname{Gal}(K^{\prime \prime }|K)$ is called the metabelian Galois group of $K$ . Note that $k^{\prime }:=\overline{k}\cap K^{\prime }$ and $k^{\prime \prime }:=\overline{k}\cap K^{\prime \prime }$ are the $\mathbb{Z}/p$ elementary abelian extension and the $\mathbb{Z}/p$ metabelian extension, respectively, of $k$ . Finally, consider the canonical surjective projections:

$$\begin{eqnarray}\operatorname{pr}_{K}^{\prime }:\operatorname{Gal}(K^{\prime }|K)\rightarrow \operatorname{Gal}(k^{\prime }|k),\quad \operatorname{pr}_{K}^{\prime \prime }:\operatorname{Gal}(K^{\prime \prime }|K)\rightarrow \operatorname{Gal}(k^{\prime \prime }|k).\end{eqnarray}$$

We will say that a group theoretical (continuous) section $s^{\prime }:\operatorname{Gal}(k^{\prime }|k)\rightarrow \operatorname{Gal}(K^{\prime }|K)$ of $\operatorname{pr}_{K}^{\prime }$ is liftable if there exists a section $s^{\prime \prime }:\operatorname{Gal}(k^{\prime \prime }|k)\rightarrow \operatorname{Gal}(K^{\prime \prime }|K)$ of $\operatorname{pr}_{K}^{\prime \prime }$ which lifts $s^{\prime }$ to $\operatorname{Gal}(k^{\prime \prime }|k)$ .

Note that if $p\neq \text{char}$ , and the $p$ th roots of unity $\unicode[STIX]{x1D707}_{p}$ are contained in $k$ and hence in $K$ , then by Kummer theory we have $K^{\prime }=K[\sqrt[p]{K}]$ and $K^{\prime \prime }=K^{\prime }[\sqrt[p]{K^{\prime }}]$ and similarly for $k$ .

Theorem A. In the above notation, let $k|\mathbb{Q}_{p}$ be finite with $\unicode[STIX]{x1D707}_{p}\subset k$ . Then the following hold.

  1. (1) Every $k$ -rational point $x\in X$ gives rise to a bouquet of conjugacy classes of liftable sections $s_{x}^{\prime }:\operatorname{Gal}(k^{\prime }|k)\rightarrow \operatorname{Gal}(K^{\prime }|K)$ above  $x$ , which is in bijection with $\text{H}^{1}(\operatorname{Gal}(k^{\prime }|k),T_{x})$ .

  2. (2) Let $p>2$ and $s^{\prime }:\operatorname{Gal}(k^{\prime }|k)\rightarrow \operatorname{Gal}(K^{\prime }|K)$ be a liftable section. Then there exists a unique $k$ -rational point $x\in X$ such that $s^{\prime }$ equals one of the sections $s_{x}^{\prime }$ as defined above.

Actually one can reformulate the question addressed by Theorem A in terms of $p$ -adic valuations, and get the following stronger result; see § 2(C) for notation, definitions, and a few facts on (formally) $p$ -adic valuations  $v$ , e.g., the $p$ -adic rank $d_{v}$ of  $v$ and $p$ -adically closed fields, and Ax and Kochen [Reference Ax and KochenAK66] and Prestel and Roquette [Reference Prestel and RoquettePR85], respectively, for proofs.

Theorem B. Let $k$ be a $p$ -adically closed field with $p$ -adic valuation $v$ of $p$ -adic rank $d_{v}$ , and suppose that $\unicode[STIX]{x1D707}_{p}\subset k$ . Let $K|k$ be an arbitrary field extension. Then the following hold.

  1. (1) Let $w$ be a $p$ -adic valuation of $K$ of $p$ -adic rank $d_{w}=d_{v}$ . Then $w$ prolongs $v$ to $K$ , and gives rise to a bouquet of conjugacy classes of liftable sections $s_{w}^{\prime }:\operatorname{Gal}(k^{\prime }|k)\rightarrow \operatorname{Gal}(K^{\prime }|K)$ above  $w$ .

  2. (2) Let $p>2$ and $s^{\prime }:\operatorname{Gal}(k^{\prime }|k)\rightarrow \operatorname{Gal}(K^{\prime }|K)$ be a liftable section. Then there exists a unique $p$ -adic valuation $w$ of $K$ of $p$ -adic rank $d_{w}=d_{v}$ such that $s^{\prime }=s_{w}^{\prime }$ for some $s_{w}^{\prime }$ as above.

Remark/Definition. As mentioned in Pop [Reference PopPop10], the condition $\unicode[STIX]{x1D707}_{p}\subset k$ is a necessary condition in the above theorems. Nevertheless, as mentioned in [Reference PopPop10], if $\unicode[STIX]{x1D707}_{p}$ is not contained in the base field, assertions similar to Theorems A and B above hold in the following form: let $l|\mathbb{Q}_{p}$ be some finite extension and $Y\rightarrow l$ a complete geometrically integral smooth variety with function field $L=\unicode[STIX]{x1D705}(Y)$ . Let $k|l$ be a finite Galois extension with $\unicode[STIX]{x1D707}_{p}\subset k$ . Setting $K:=Lk$ , consider the field extensions $K^{\prime }|K{\hookrightarrow}K^{\prime \prime }|K$ and $k^{\prime }|k{\hookrightarrow}k^{\prime \prime }|k$ as above. Then $k^{\prime }=K^{\prime }\cap \overline{l}$ and $k^{\prime \prime }=K^{\prime \prime }\cap \overline{l}$ , and $K^{\prime }|L$ and $K^{\prime \prime }|L$ , as well as $k^{\prime }|l$ and $k^{\prime \prime }|l$ , are Galois extensions too, and one gets surjective canonical projections

$$\begin{eqnarray}\operatorname{pr}_{L}^{\prime }:\operatorname{Gal}(K^{\prime }|L)\rightarrow \operatorname{Gal}(k^{\prime }|l),\quad \operatorname{pr}_{L}^{\prime \prime }:\operatorname{Gal}(K^{\prime \prime }|L)\rightarrow \operatorname{Gal}(k^{\prime \prime }|l).\end{eqnarray}$$

In these notations and context we will say that a section $s_{L}^{\prime }:\operatorname{Gal}(k^{\prime }|l)\rightarrow \operatorname{Gal}(K^{\prime }|L)$ of $\operatorname{pr}_{L}^{\prime }$ is liftable if there exists a section $s_{L}^{\prime \prime }:\operatorname{Gal}(k^{\prime \prime }|l)\rightarrow \operatorname{Gal}(K^{\prime \prime }|L)$ of $\operatorname{pr}_{L}^{\prime \prime }$ which lifts $s_{L}^{\prime }$ .

This being said, one has the following extensions of Theorems A and B.

Theorem A0. In the above notation and hypothesis, the following hold.

  1. (1) Every $l$ -rational point $y\in Y$ gives rise to a bouquet of conjugacy classes of liftable sections $s_{y}^{\prime }:\operatorname{Gal}(k^{\prime }|l)\rightarrow \operatorname{Gal}(K^{\prime }|L)$ above  $y$ , which is in bijection with $\text{H}^{1}(\operatorname{Gal}(k^{\prime }|l),T_{y})$ .

  2. (2) Let $p>2$ and $s_{L}^{\prime }:\operatorname{Gal}(k^{\prime }|l)\rightarrow \operatorname{Gal}(K^{\prime }|L)$ be a liftable section. Then there exists a unique $l$ -rational point $y\in Y$ such that $s_{L}^{\prime }$ equals one of the sections $s_{y}^{\prime }$ as defined above.

Theorem B0. Let $l$ be a $p$ -adically closed field with $p$ -adic valuation $v$ and let $L|l$ be an arbitrary field extension. Then in the above notation the following hold.

  1. (1) Let $w$ be a $p$ -adic valuation of $L$ with $d_{w}=d_{v}$ . Then $w$ prolongs $v$ to $L$ , and gives rise to a bouquet of conjugacy classes of liftable sections $s_{w}^{\prime }:\operatorname{Gal}(k^{\prime }|l)\rightarrow \operatorname{Gal}(K^{\prime }|L)$ above $w$ .

  2. (2) Let $p>2$ and $s_{L}^{\prime }:\operatorname{Gal}(k^{\prime }|l)\rightarrow \operatorname{Gal}(K^{\prime }|L)$ be a liftable section. Then there exists a unique $p$ -adic valuation $w$ of $L$ such that $d_{w}=d_{v}$ , and $s_{L}^{\prime }$ equals one of the sections $s_{w}^{\prime }$ as above.

Remark.

As mentioned in Pop [Reference PopPop10], the $\mathbb{Z}/p$ metabelian form of the birational $p$ -adic SC for curves implies the corresponding full Galois SC, which was proved in Koenigsmann [Reference KoenigsmannKoe05]. The same holds correspondingly for higher dimensional varieties, provided $p>2$ , thus implying Stix’s [Reference StixSti13] result in this case. Since the proof of the implication under discussion in the case of general varieties is word-by-word the same as that from [Reference PopPop10], we will not reproduce it here.

An interesting application of the results and techniques developed here is the following fact concerning the $p$ -adic section conjecture for varieties: let $k|\mathbb{Q}_{p}$ be a finite extension and $X$ a complete smooth $k$ -variety. Then there exists a finite effectively computable family of finite geometrically $\mathbb{Z}/p$ elementary abelian (ramified) covers $\unicode[STIX]{x1D711}_{i}:X_{i}\rightarrow X$ , $i\in I$ , satisfying:

  1. (i) $\bigcup _{i}\unicode[STIX]{x1D711}_{i}(X_{i}(k))=X(k)$ , i.e., every $x\in X(k)$ ‘survives’ in at least one of the covers $X_{i}\rightarrow X$ ;

  2. (ii) a section $s:G_{k}\rightarrow \unicode[STIX]{x1D70B}_{1}(X,\ast )$ can be lifted to a section $s_{i}:G_{k}\rightarrow \unicode[STIX]{x1D70B}_{1}(X_{i},\ast )$ for some $i\in I$ if and only if $s$ arises from a $k$ -rational point $x\in X(k)$ in the way described above.

The main technical tools for the proof of the above theorems are:

As a final remark, we notice that the condition $p>2$ in the results above originates from the weaker results about recovering valuations from rigid elements in the case $p=2$ . This technical condition might be removable, but some new ideas/techniques might be necessary to do so; see the comment at the beginning of the proof of assertion (2) of Theorem B in § 3.

2 Reviewing a few known facts

For the reader’s sake, in this section we review a few known facts about valuation theory, decomposition theory, and (formally) $p$ -adic fields, but do not reproduce proofs.

(A) Generalities about valuations and their Hilbert decomposition theory

For an arbitrary field $K$ and an arbitrary valuation $v$ of $K$ , we denote usually by ${\mathcal{O}}_{v},\mathfrak{m}_{v}$ the valuation ring/ideal of $v$ , by $vK=K^{\times }/{\mathcal{O}}^{\times }$ the value group of $v$ , and by $Kv=:{\mathcal{O}}_{v}/\mathfrak{m}_{v}:=\unicode[STIX]{x1D705}(v)$ the residue field of $v$ . Further, $U_{v}^{1}:=1+\mathfrak{m}_{v}\subset U_{v}$ denote the groups of principal $v$ -units and $v$ -units, respectively. One has the following canonical exact sequences:

$$\begin{eqnarray}1\rightarrow \mathfrak{m}_{v}\rightarrow {\mathcal{O}}_{v}\rightarrow Kv\rightarrow 0\quad \text{and}\quad 1\rightarrow U_{v}^{1}\rightarrow {\mathcal{O}}_{v}^{\times }\rightarrow (Kv)^{\times }\rightarrow 1.\end{eqnarray}$$

The set of ideals of ${\mathcal{O}}_{v}$ is totally ordered with respect to inclusion. The subrings ${\mathcal{O}}_{1}\subseteq K$ with ${\mathcal{O}}_{v}\subseteq {\mathcal{O}}_{1}$ are precisely the localizations ${\mathcal{O}}_{1}:=({\mathcal{O}}_{v})_{\mathfrak{m}_{1}}$ with $\mathfrak{m}_{1}\in \operatorname{Spec}({\mathcal{O}}_{v})$ and, moreover, $\mathfrak{m}_{1}\subset {\mathcal{O}}_{v}$ , and $({\mathcal{O}}_{v})_{\mathfrak{m}_{1}}$ is a valuation ring with valuation ideal $\mathfrak{m}_{1}$ . Further, if $v_{1}$ is the corresponding valuation of $K$ , then ${\mathcal{O}}_{0}:={\mathcal{O}}_{v}/\mathfrak{m}_{1}$ is a valuation ring of $Kv_{1}$ with valuation ideal $\mathfrak{m}_{0}:=\mathfrak{m}_{v}/\mathfrak{m}_{1}$ , say of a valuation $v_{0}$ of $Kv_{1}$ . We say that $v_{1}$ is a coarsening of $v$ , and denote $v_{1}\leqslant v$ and $v_{0}:=v/v_{1}$ .

Conversely, if $v_{1}$ is a valuation of $K$ and $v_{0}$ is a valuation on the residue field $Kv_{1}$ , then the preimage of the valuation ring ${\mathcal{O}}_{v_{0}}\subseteq Kv_{1}$ under ${\mathcal{O}}_{v_{1}}\rightarrow Kv_{1}$ is a valuation ring ${\mathcal{O}}\subseteq {\mathcal{O}}_{v_{1}}$ having as valuation ideal the preimage $\mathfrak{m}\subset {\mathcal{O}}$ of $\mathfrak{m}_{v_{0}}$ . Hence, if $v$ is the valuation defined by ${\mathcal{O}}$ on $K$ , then $Kv=(Kv_{1})v_{0}$ and one has a canonical exact sequence of totally ordered groups:

$$\begin{eqnarray}0\rightarrow v_{0}(Kv_{1})\rightarrow vK\rightarrow v_{1}K\rightarrow 0.\end{eqnarray}$$

The relation between coarsening and decomposition theory is as follows. Let $\tilde{K}|K$ be a Galois extension and $\tilde{v}|v$ be a prolongation of $v$ to $\tilde{K}$ . Then the coarsenings $\tilde{v}_{1}$ of $\tilde{v}$ are in a canonical bijection with the coarsenings $v_{1}$ of $v$ via ${\mathcal{O}}_{\tilde{v}_{1}}\mapsto {\mathcal{O}}_{v_{1}}:={\mathcal{O}}_{\tilde{v}_{1}}\cap K$ ; thus, ${\mathcal{O}}_{\tilde{v}_{1}}={\mathcal{O}}_{\tilde{v}}\cdot {\mathcal{O}}_{v_{1}}$ . Let $\tilde{v}_{1}|v_{1}$ be given coarsenings of $\tilde{v}|v$ and $\tilde{K}\tilde{v}_{1}|Kv_{1}$ be the corresponding residue field extension. Then $\tilde{v}_{0}:=\tilde{v}/\tilde{v}_{1}$ is canonically a prolongation of $v_{0}:=v/v_{1}$ .

Fact 1. Let $T_{\tilde{v}}\subseteq Z_{\tilde{v}}$ and $T_{\tilde{v}_{1}}\subseteq Z_{\tilde{v}_{1}}$ be the corresponding inertia/decomposition groups, and set $G_{\tilde{v}_{1}}=\operatorname{Aut}(\tilde{K}\tilde{v}_{1}|Kv_{1})$ . Then one has a canonical exact sequence $1\rightarrow T_{\tilde{v}_{1}}\rightarrow Z_{\tilde{v}_{1}}\rightarrow G_{\tilde{v}_{1}}\rightarrow 1$ , and the inertia/decomposition groups satisfy:

  1. (a) $Z_{\tilde{v}}\subseteq Z_{\tilde{v}_{1}}$ and $T_{\tilde{v}}\supseteq T_{\tilde{v}_{1}}$ . Further, $T_{\tilde{v}_{1}}$ is a normal subgroup of $Z_{\tilde{v}}$ ;

  2. (b) via $1\rightarrow T_{\tilde{v}_{1}}\rightarrow Z_{\tilde{v}_{1}}\rightarrow G_{\tilde{v}_{1}}=Z_{\tilde{v}_{1}}/T_{\tilde{v}_{1}}\rightarrow 1$ , one has that $T_{\tilde{v}_{0}}=T_{\tilde{v}}/T_{\tilde{v}_{1}}$ and $Z_{\tilde{v}_{0}}=Z_{\tilde{v}}/T_{\tilde{v}_{1}}$ .

(B) Hilbert decomposition in elementary abelian extensions

Let $K$ be a field of characteristic prime to $p$ containing $\unicode[STIX]{x1D707}_{n}$ , where $n=p^{e}$ is a power of the prime number $p$ , and let $\tilde{K}=K[\sqrt[n]{K}]$ be the maximal $\mathbb{Z}/n$ elementary abelian extension of $K$ . Let $v$ be a valuation of $K$ , $\tilde{v}$ be some prolongation of $v$ to $\tilde{K}$ , and $V_{\tilde{v}}\subseteq T_{\tilde{v}}\subseteq Z_{\tilde{v}}$ be the ramification, the inertia, and the decomposition, groups of $\tilde{v}|v$ , respectively. We remark that because $\operatorname{Gal}(\tilde{K}|K)$ is commutative, the groups $V_{\tilde{v}}$ , $T_{\tilde{v}}$ , and $Z_{\tilde{v}}$ depend on $v$ only. Therefore, we will simply denote them by $V_{v}$ , $T_{v}$ , and $Z_{v}$ . Finally, we denote by $K^{Z}\subseteq K^{T}\subseteq K^{V}$ the corresponding fixed fields in $\tilde{K}$ . One has the following, see e.g. Pop [Reference PopPop10, §2] (where the case $n=p$ is dealt with; but the proof is similar for general $n=p^{e}$ and we will not reproduce the details here).

Fact 2. In the above notation, the following hold.

  1. (1) Let $U^{v}:=1+p^{2e}\mathfrak{m}_{v}$ . Then $\sqrt[n]{U^{v}}\subset K^{Z}$ , and $K^{Z}=K[\sqrt[n]{1+\mathfrak{m}_{v}}]$ , provided $\text{char}(Kv)\neq p$ . In particular, if $w_{1}$ and $w_{2}$ are independent valuations of $K$ , then $Z_{w_{1}}\cap Z_{w_{2}}=1$ .

  2. (2) If $p\neq \operatorname{char}(Kv)$ , then $V_{v}=1$ and $\tilde{K}\tilde{v}=\widetilde{Kv}$ and hence $G_{v}:=Z_{v}/T_{v}=\operatorname{Gal}(\widetilde{Kv}|Kv)$ in this case. And, if $p=\operatorname{char}(Kv)$ , then $V_{v}=T_{v}$ , and the residue field $\tilde{K}\tilde{v}$ contains $(Kv)^{1/n}$ and a maximal $\mathbb{Z}/n$ elementary abelian extension of $Kv$ .

  3. (3) Let $L:=K_{v}^{\text{h}}$ be the Henselization of $K$ with respect to $v$ . Then $\tilde{L}=L\tilde{K}$ is a maximal $\mathbb{Z}/n$ elementary extension of $L$ . Therefore, we have $\operatorname{Gal}(\tilde{L}|L)\cong Z_{\tilde{v}}$ canonically.

(C) Formally $p$ -adic fields and $p$ -adic valuations

We recall a few basic facts about $p$ -adic valuations and (formally) $p$ -adically closed fields; see Ax and Kochen [Reference Ax and KochenAK66] and Prestel and Roquette [Reference Prestel and RoquettePR85] for more details.

  1. (1) A valuation $v$ of a field $k$ is called (formally) $p$ -adic if its residue field $kv$ is a finite field, say $\mathbb{F}_{q}$ with $q=p^{f_{v}}$ elements, and the value group $vk$ has a minimal positive element $1_{v}$ such that $v(p)=e_{v}\cdot 1_{v}$ for some natural number $e_{v}>0$ . The number $d_{v}:=e_{v}f_{v}$ is called the $p$ -adic rank (or degree) of the $p$ -adic valuation $v$ . Note that a field $k$ carrying a $p$ -adic valuation $v$ must necessarily have $\operatorname{char}(k)=0$ , as $v(p)\neq \infty$ , and $\operatorname{char}(kv)=p$ .

  2. (2) Let $v$ be a $p$ -adic valuation of $k$ with valuation ring ${\mathcal{O}}_{v}$ . Then ${\mathcal{O}}_{1}:={\mathcal{O}}_{v}[1/p]$ is the valuation ring of the unique maximal proper coarsening $v_{1}$ of $v$ , which is called the canonical coarsening of  $v$ . Note that setting $k_{0}:=kv_{1}$ , and $v_{0}:=v/v_{1}$ the corresponding valuation on $k_{0}$ , we have: $v_{0}$ is a $p$ -adic valuation of $k_{0}$ with $e_{v_{0}}=e_{v}$ and $f_{v_{0}}=f_{v}$ ; hence, $d_{v_{0}}=d_{v}$ and, moreover, $v_{0}$ is a discrete valuation of $k_{0}$ . In particular, the following hold.

    1. (a) $v$ has rank one if and only if $v_{1}$ is the trivial valuation if and only if $v=v_{0}$ .

    2. (b) Giving a $p$ -adic valuation $v$ of a field $k$ of $p$ -adic rank $d_{v}=e_{v}f_{v}$ is equivalent to giving a place $\mathfrak{p}$ of $k$ with values in a finite extension $\boldsymbol{k}_{0}$ of $\mathbb{Q}_{p}$ such that the residue field $k_{0}:=k\mathfrak{p}$ of $\mathfrak{p}$ is dense in $\boldsymbol{k}_{0}$ , and $\boldsymbol{k}_{0}|\mathbb{Q}_{p}$ has ramification index $e_{v}$ and residual degree $f_{v}$ .

    3. (c) If $v_{i}<v$ is a strict coarsening of $v$ , then $v_{i}\leqslant v_{1}$ , and the quotient valuation $v/v_{i}$ on the residue field $kv_{i}$ is a $p$ -adic valuation with $e_{v/v_{i}}=e_{v}$ and $f_{v/v_{i}}=f_{v}$ ; thus, $d_{v/v_{i}}=d_{v}$ . (Actually, $\unicode[STIX]{x1D705}(v_{i}/v_{1})\cong kv_{1}$ and $\unicode[STIX]{x1D705}(v_{i}/v)\cong kv$ canonically.)

  3. (3) Let $v$ be a $p$ -adic valuation of $k$ , $l|k$ a finite field extension, and denote by $w|v$ the prolongations of $v$ to $l$ . Then the following hold.

    1. (a) All prolongations $w|v$ are $p$ -adic valuations. Further, the fundamental equality holds for the finite extension $l|k$ , i.e., $[l:k]=\sum _{w|v}e(w|v)f(w|v)$ , where $e(w|v)$ and $f(w|v)$ are the ramification index and the residual degree, respectively, of $w|v$ .

    2. (b) For each $w|v$ , let $w_{1}$ be the canonical coarsening of $w$ , and $w_{0}=w/w_{1}$ be the canonical quotient on the residue field $lw_{1}$ . Then by general decomposition theory of valuations one has $e(w|v)=e(w_{1}|v_{1})e(w_{0}|v_{0})$ and $f(w|v)=f(w_{0}|v_{0})$ . Further, $e_{w}=e(w_{0}|v_{0})e_{v}$ and $f_{w}=f(w|v)f_{v}$ ; thus, $d_{w}=e(w_{0}|v_{0})f(w|v)d_{v}$ .

    3. (c) In particular, if $l|k$ is Galois, and $w^{Z}$ is the restriction of $w$ to the decomposition field $l^{Z}$ of $w$ , then $e(w|w^{Z})=e(w|v)$ and $f(w|w^{Z})=f(w|v)$ ; thus, $w^{Z}$ is a $p$ -adic valuation having $p$ -adic rank equal to the one of $v$ . Further, the same is true for infinite Galois extensions  $l|k$ .

  4. (4) A field $k$ is called (formally) $p$ -adically closed if $k$ carries a $p$ -adic valuation $v$ such that for every finite extension $\tilde{k}|k$ , one has: if $v$ has a prolongation $\tilde{v}$ to $\tilde{k}$ with $d_{\tilde{v}}=d_{v}$ , then $\tilde{k}=k$ . One has the following characterization of the $p$ -adically closed fields: for a field $k$ endowed with a $p$ -adic valuation $v$ , and its canonical coarsening $v_{1}$ , the following are equivalent.

    1. (i) $k$ is $p$ -adically closed with respect to $v$ .

    2. (ii) $v$ is Henselian and $v_{1}k$ is divisible (maybe trivial).

    3. (iii) $v_{1}$ is Henselian, $v_{1}k$ is divisible (maybe trivial), and the residue field $k_{0}:=kv_{1}$ is relatively algebraically closed in its $v_{0}=v/v_{1}$ completion $\boldsymbol{k}_{0}$ (itself a finite extension of  $\mathbb{Q}_{p}$ ).

    Further, the $p$ -adic valuation of a $p$ -adically closed field is definable and unique.

  5. (5) Finally, for every field $k$ endowed with a $p$ -adic valuation $v$ , there exist $p$ -adic closures $\widehat{k},\widehat{v}$ such that $d_{\widehat{v}}=d_{v}$ . Moreover, the space of the $k$ -isomorphy classes of $p$ -adic closures of $k,v$ has a concrete description as follows: let $v_{1}$ be the canonical coarsening of $v$ , and $\boldsymbol{k}_{0}|\mathbb{Q}_{p}$ the completion of the residue field of $k_{0}=kv_{1}$ with respect to the discrete valuation $v_{0}=v/v_{1}$ . Recalling the canonical exact sequence $1\rightarrow I_{v_{1}}\xrightarrow[{}]{}D_{v}\xrightarrow[{}]{\text{pr}}G_{\boldsymbol{k}_{0}}\rightarrow 1$ , one has that the space of the isomorphy classes of $p$ -adic closures of $k,v$ is in bijection with the space of conjugacy classes of sections of $\text{pr}$ and thus with $\text{H}_{\text{cont}}^{1}(G_{\boldsymbol{k}_{0}},I_{v_{1}})$ .

  6. (6) In the above notation, the following hold.

    1. (a) Let $k,v$ be a $p$ -adically closed field. Then $k_{0}=kv_{1}$ is $p$ -adically closed (with respect to $v_{0}$ ), and $k^{\text{abs}}$ is actually the relative algebraic closure of $\mathbb{Q}$ in $k_{0}$ . Further, $\overline{k}=k\overline{\mathbb{Q}}$ .

    2. (b) The elementary equivalence class of a $p$ -adically closed field $k$ is determined by both the absolute subfield $k^{\text{abs}}:=k\cap \overline{\mathbb{Q}}=k_{0}\cap \overline{\mathbb{Q}}$ of $k$ and the completion $\boldsymbol{k}_{0}$ of $k_{0}=kv_{1}$ with respect to $v_{0}$ (which equals the completion of $k^{\text{abs}}$ with respect to $v_{0}$ as well).

    3. (c) If $N$ is $p$ -adically closed with respect to the $p$ -adic valuation $w$ , and $k\subseteq N$ is a subfield which is relatively closed in $N$ , then $k$ is $p$ -adically closed with respect to $v:=w|_{k}$ , $v$ and $w$ have equal $p$ -adic ranks, and $N$ and $k$ are elementary equivalent.

    4. (d) If $N|k$ is an extension of $p$ -adically closed fields of the same rank, the following hold.

      • $\tilde{k}|k\mapsto N\tilde{k}$ defines a bijection from the set of algebraic extensions $\tilde{k}|k$ of $k$ onto the set of algebraic extensions of $N$ .

      • The canonical projection $G_{N}\rightarrow G_{k}$ is an isomorphism.

    5. (e) In particular, if $L|l$ is an extension of $p$ -adically closed fields of the same rank, in the notation from the Introduction, the following canonical projections are isomorphisms:

(D) Valuations and rigid elements

We recall the result of Arason et al. [Reference Arason, Elman and JacobAEJ87, Theorem 2.16]; see also Koenigsmann [Reference KoenigsmannKoe95], Ware [Reference WareWar81], Efrat [Reference EfratEfr99], and especially Topaz [Reference TopazTop15] for much more about this. The point is that one can recover valuations of a field $K$ from particular subgroups $T\subset K^{\times }$ as follows: let $T\subset K^{\times }$ be a subgroup with $-1\in T$ . We say that $x\in K^{\times }\backslash T$ is $T$ -rigid if $1+x\in T\cup xT$ ; and, by abuse of language, we say that $K$ is $T$ -rigid if all $x\in K^{\times }\backslash T$ are $T$ -rigid.

Theorem 3 (Arason et al.).

In the above notation, let $T\subset K^{\times }$ be a subgroup with $-1\in T$ such that $K$ is $T$ -rigid. Then there exists a valuation $v$ of $K$ whose valuation ideal $\mathfrak{m}_{v}$ satisfies $1+\mathfrak{m}_{v}\subseteq T$ , and whose valuation ring ${\mathcal{O}}_{v}$ has the property that $|{\mathcal{O}}_{v}^{\times }/(T\cap {\mathcal{O}}_{v}^{\times })|\leqslant 2$ .

3 Proof of Theorem B

To (1): Let $\widehat{K},\widehat{w}$ be a $p$ -adic closure of $K,w$ . Then $\widehat{w}$ prolongs $w$ and has $p$ -adic rank $d_{\widehat{w}}=d_{w}$ and thus equal to $d_{v}$ by the fact that $d_{w}=d_{v}$ . Therefore, since $k$ is $p$ -adically closed, $k$ must be relatively algebraically closed in $\widehat{K}$ . We conclude by using (†) from § 2(C)(6)(e), with $l:=k$ and $L:=\widehat{K}$ , and taking into account that the isomorphism $\operatorname{Gal}(\widehat{K}^{\prime \prime }|\widehat{K})\rightarrow \operatorname{Gal}(k^{\prime \prime }|k)$ factors through $\operatorname{Gal}(K^{\prime \prime }|K)\rightarrow \operatorname{Gal}(k^{\prime \prime }|k)$ and thus gives rise to a liftable section of $\operatorname{Gal}(K^{\prime }|K)\rightarrow \operatorname{Gal}(k^{\prime }|k)$ .

To (2): The proof of assertion (2) is divided into three main steps, whereas the hypothesis $p>2$ is used only in Step 2. This might be relevant when trying to address the case  $p=2$ .

Step 1. By Kummer theory, $\operatorname{pr}_{K}^{\prime }:\operatorname{Gal}(K^{\prime }|K)\rightarrow \operatorname{Gal}(k^{\prime }|k)$ is Pontrjagin dual to the canonical embedding $k^{\times }/p\rightarrow K^{\times }/p$ . Second, given a liftable section $s^{\prime }:\operatorname{Gal}(k^{\prime }|k)\rightarrow \operatorname{Gal}(K^{\prime }|K)$ of $\operatorname{pr}_{K}^{\prime }$ , it follows by Kummer theory that the Pontrjagin dual of $s^{\prime }:\operatorname{Gal}(k^{\prime }|k)\rightarrow \operatorname{Gal}(K^{\prime }|K)$ is a surjective projection $K^{\times }/p\rightarrow k^{\times }/p$ , whose kernel $\unicode[STIX]{x1D6F4}/p\subset K^{\times }/p$ is a complement of $k^{\times }/p\subset K^{\times }/p$ . That means that $s^{\prime }$ gives rise canonically to a presentation of $K^{\times }/p$ as a direct sum

For every $k$ -subfield $K_{\unicode[STIX]{x1D6FC}}\subset K$ which is relatively algebraically closed in  $K$ , one has a commutative diagram of surjective projections

and $s^{\prime }$ gives rise canonically to a liftable section $s_{\unicode[STIX]{x1D6FC}}^{\prime }$ of $\operatorname{pr}_{\unicode[STIX]{x1D6FC}}^{\prime }:\operatorname{Gal}(K_{\unicode[STIX]{x1D6FC}}^{\prime }|K_{\unicode[STIX]{x1D6FC}})\rightarrow \operatorname{Gal}(k^{\prime }|k)$ , etc. In particular, one has corresponding canonical presentations as direct sums

defined by the sections $s_{\unicode[STIX]{x1D6FC}}^{\prime }:\operatorname{Gal}(k^{\prime }|k)\rightarrow \operatorname{Gal}(K_{\unicode[STIX]{x1D6FC}}^{\prime }|K_{\unicode[STIX]{x1D6FC}})$ induced by $s^{\prime }:\operatorname{Gal}(k^{\prime }|k)\rightarrow \operatorname{Gal}(K^{\prime }|K)$ .

Claim.

In the above notions, one has $\unicode[STIX]{x1D6F4}_{\unicode[STIX]{x1D6FC}}/p=\unicode[STIX]{x1D6F4}/p\cap K_{\unicode[STIX]{x1D6FC}}^{\times }/p$ and thus $\unicode[STIX]{x1D6F4}/p$ determines $\unicode[STIX]{x1D6F4}_{\unicode[STIX]{x1D6FC}}/p$ .

Indeed, let $D_{\unicode[STIX]{x1D6FC}}:=\operatorname{im}(s_{\unicode[STIX]{x1D6FC}}^{\prime })\subset \operatorname{Gal}(K_{\unicode[STIX]{x1D6FC}}^{\prime }|K_{\unicode[STIX]{x1D6FC}})$ . Then, by the definition of $s_{\unicode[STIX]{x1D6FC}}^{\prime }$ , it follows that $D_{\unicode[STIX]{x1D6FC}}$ is the image of $D=\operatorname{im}(s^{\prime })$ under the canonical projection $\operatorname{Gal}(K^{\prime }|K)\rightarrow \operatorname{Gal}(K_{\unicode[STIX]{x1D6FC}}^{\prime }|K_{\unicode[STIX]{x1D6FC}})$ . In other words, by Pontrjagin duality, the projection $K_{\unicode[STIX]{x1D6FC}}^{\times }/p\rightarrow k^{\times }/p$ factors through the inclusion $K_{\unicode[STIX]{x1D6FC}}^{\times }/p{\hookrightarrow}K^{\times }/p$ . Hence, $\unicode[STIX]{x1D6F4}_{\unicode[STIX]{x1D6FC}}/p$ is mapped into $\unicode[STIX]{x1D6F4}/p$ under $K_{\unicode[STIX]{x1D6FC}}^{\times }/p{\hookrightarrow}K^{\times }/p$ , which proves the claim.

Now let $T/p:=\unicode[STIX]{x1D6F4}/p\cdot {\mathcal{O}}_{v}^{\times }/p$ and $T\subset K^{\times }$ be the corresponding subgroup (thus containing the $p$ th powers in $K^{\times }$ ). Then, for every $k$ -subfield $K_{\unicode[STIX]{x1D6FC}}\subset K$ which is relatively algebraically closed in $K$ , by the remarks above one has that $T_{\unicode[STIX]{x1D6FC}}:=T\cap K_{\unicode[STIX]{x1D6FC}}^{\times }\subset K_{\unicode[STIX]{x1D6FC}}^{\times }$ satisfies $T_{\unicode[STIX]{x1D6FC}}/p=\unicode[STIX]{x1D6F4}_{\unicode[STIX]{x1D6FC}}/p\cdot {\mathcal{O}}_{v}^{\times }/p$ .

Finally, let $(K_{\unicode[STIX]{x1D6FC}})_{\unicode[STIX]{x1D6FC}}$ be the family of all the $k$ -subfields $K_{\unicode[STIX]{x1D6FC}}\subset K$ which are relatively algebraically closed in $K$ and satisfy $\text{tr}.\text{deg}(K_{\unicode[STIX]{x1D6FC}}|k)=1$ . Then, by Pop [Reference PopPop10, Theorem B], for every subfield $K_{\unicode[STIX]{x1D6FC}}$ , there exists a unique $p$ -adic valuation $w_{\unicode[STIX]{x1D6FC}}$ of $K_{\unicode[STIX]{x1D6FC}}$ prolonging the $p$ -adic valuation $v$ of $k$ to $K_{\unicode[STIX]{x1D6FC}}$ and having the same $p$ -adic rank as  $v$ . Our final aim is to show that there exists a (unique) $p$ -adic valuation $w$ of $K$ such that $w_{\unicode[STIX]{x1D6FC}}$ is the restriction of $w$ to $K_{\unicode[STIX]{x1D6FC}}$ for each $K_{\unicode[STIX]{x1D6FC}}$ .

Lemma 4. In the above notation, $K_{\unicode[STIX]{x1D6FC}}$ is $T_{\unicode[STIX]{x1D6FC}}$ -rigid. Further, $T=\bigcup _{\unicode[STIX]{x1D6FC}}T_{\unicode[STIX]{x1D6FC}}$ , and $K$ is $T$ -rigid.

Proof. We first show that ${\mathcal{O}}_{w_{\unicode[STIX]{x1D6FC}}}\subset T_{\unicode[STIX]{x1D6FC}}$ . Indeed, let $v$ be the $p$ -adic valuation of $k$ , and further consider: first, the canonical coarsening $v_{1}$ of $v$ and the canonical $p$ -adic valuation $v_{0}:=v/v_{1}$ on the residue field $k_{0}:=kv_{1}$ of $v_{1}$ . Second, consider the $p$ -adic valuation $w_{\unicode[STIX]{x1D6FC}}$ of $K_{\unicode[STIX]{x1D6FC}}$ , and let $w_{\unicode[STIX]{x1D6FC}1}$ and $w_{\unicode[STIX]{x1D6FC}0}:=w_{\unicode[STIX]{x1D6FC}}/w_{\unicode[STIX]{x1D6FC}1}$ and $K_{\unicode[STIX]{x1D6FC}0}$ be correspondingly defined. Notice that $w_{\unicode[STIX]{x1D6FC}}|_{k}=v$ implies that $w_{\unicode[STIX]{x1D6FC}1}|_{k}=v_{1}$ and $w_{\unicode[STIX]{x1D6FC}0}|_{k_{0}}=v_{0}$ . The following hold.

  1. (a) First, by Fact 2, it follows that $\sqrt[p]{1+p^{2}\mathfrak{m}_{w_{\unicode[STIX]{x1D6FC}}}}$ is contained in the decomposition field of $w_{\unicode[STIX]{x1D6FC}}$ over $K$ , which is actually the fixed field of $Z_{w_{\unicode[STIX]{x1D6FC}}}$ in $K_{\unicode[STIX]{x1D6FC}}^{\prime }$ . Second, the fixed field of $\operatorname{im}(s^{\prime })$ in $K_{\unicode[STIX]{x1D6FC}}^{\prime }$ is, by the mere definitions, generated as a field extension of $K$ by $\sqrt[p]{\unicode[STIX]{x1D6F4}_{\unicode[STIX]{x1D6FC}}^{^{\prime }}}$ . Thus, since $\operatorname{im}(s^{\prime })\subset Z_{w_{\unicode[STIX]{x1D6FC}}}$ , it follows by Kummer theory that $1+p^{2}\mathfrak{m}_{w_{\unicode[STIX]{x1D6FC}}}\subset \unicode[STIX]{x1D6F4}_{\unicode[STIX]{x1D6FC}}$ .

  2. (b) Since, by the mere definition, one has $\mathfrak{m}_{w_{\unicode[STIX]{x1D6FC}1}}\subset \mathfrak{m}_{w_{\unicode[STIX]{x1D6FC}}}$ and $p$ is invertible in ${\mathcal{O}}_{w_{\unicode[STIX]{x1D6FC}1}}$ , it follows that $1+\mathfrak{m}_{w_{\unicode[STIX]{x1D6FC}1}}\subset 1+p^{2}\mathfrak{m}_{w_{\unicode[STIX]{x1D6FC}}}$ . Thus, one has finally $1+\mathfrak{m}_{w_{\unicode[STIX]{x1D6FC}1}}\subset \unicode[STIX]{x1D6F4}_{\unicode[STIX]{x1D6FC}}$ as well.

  3. (c) Since $w_{\unicode[STIX]{x1D6FC}}$ and $v$ have the same $p$ -adic rank, it follows by the discussion in § 2(C)(5) that $w_{\unicode[STIX]{x1D6FC}0}$ and $v_{0}$ are discrete $p$ -adic valuations of the same $p$ -adic rank and hence $k_{0}$ is dense in $K_{\unicode[STIX]{x1D6FC}0}$ . Therefore, since $w_{\unicode[STIX]{x1D6FC}0}|v_{0}$ are discrete valuations, and $k_{0}$ is dense in $K_{\unicode[STIX]{x1D6FC}0}$ under $k_{0}{\hookrightarrow}K_{\unicode[STIX]{x1D6FC}0}$ , one has that ${\mathcal{O}}_{w_{\unicode[STIX]{x1D6FC}0}}^{\times }={\mathcal{O}}_{v_{0}}^{\times }\cdot (1+p^{2}\mathfrak{m}_{w_{\unicode[STIX]{x1D6FC}0}})$ and $K_{\unicode[STIX]{x1D6FC}0}^{\times }=k_{0}^{\times }\cdot (1+p^{2}\mathfrak{m}_{w_{\unicode[STIX]{x1D6FC}0}})$ as well.

  4. (d) Since $K_{\unicode[STIX]{x1D6FC}0}^{\times }={\mathcal{O}}_{w_{\unicode[STIX]{x1D6FC}1}}^{\times }/(1+\mathfrak{m}_{w_{\unicode[STIX]{x1D6FC}1}})$ , $k_{0}^{\times }={\mathcal{O}}_{v_{1}}^{\times }/(1+\mathfrak{m}_{v_{1}})$ , and $1+p^{2}\mathfrak{m}_{w_{\unicode[STIX]{x1D6FC}0}}=(1+p^{2}\mathfrak{m}_{w_{\unicode[STIX]{x1D6FC}}})/(1+\mathfrak{m}_{w_{\unicode[STIX]{x1D6FC}1}})$ , from the equality $K_{\unicode[STIX]{x1D6FC}0}^{\times }=k_{0}^{\times }\cdot (1+p^{2}\mathfrak{m}_{w_{\unicode[STIX]{x1D6FC}0}})$ above, it follows that ${\mathcal{O}}_{w_{\unicode[STIX]{x1D6FC}1}}^{\times }={\mathcal{O}}_{v_{1}}^{\times }\cdot (1+p^{2}\mathfrak{m}_{w_{\unicode[STIX]{x1D6FC}}})$ .

  5. (e) Similarly, the equalities ${\mathcal{O}}_{w_{\unicode[STIX]{x1D6FC}0}}^{\times }={\mathcal{O}}_{w_{\unicode[STIX]{x1D6FC}}}^{\times }/(1+\mathfrak{m}_{w_{\unicode[STIX]{x1D6FC}1}})$ and ${\mathcal{O}}_{w_{\unicode[STIX]{x1D6FC}0}}^{\times }={\mathcal{O}}_{v_{0}}^{\times }\cdot (1+p^{2}\mathfrak{m}_{w_{\unicode[STIX]{x1D6FC}0}})$ imply that ${\mathcal{O}}_{w_{\unicode[STIX]{x1D6FC}}}^{\times }={\mathcal{O}}_{v}^{\times }\cdot (1+p^{2}\mathfrak{m}_{w_{\unicode[STIX]{x1D6FC}}})$ .

Hence, since ${\mathcal{O}}_{v}^{\times },1+p^{2}\mathfrak{m}_{w_{\unicode[STIX]{x1D6FC}}}\subset T_{\unicode[STIX]{x1D6FC}}$ , one finally has ${\mathcal{O}}_{w_{\unicode[STIX]{x1D6FC}}}^{\times }={\mathcal{O}}_{v}^{\times }\cdot (1+p^{2}\mathfrak{m}_{w_{\unicode[STIX]{x1D6FC}}})\subset T_{\unicode[STIX]{x1D6FC}}$ , as claimed.

We next show that $K_{\unicode[STIX]{x1D6FC}}$ is $T_{\unicode[STIX]{x1D6FC}}$ -rigid. To do so, we first notice that by the discussion above, for any fixed element $\unicode[STIX]{x1D70B}\in {\mathcal{O}}_{v}$ of minimal positive value $1_{v}\in vk$ , the following holds: let $x\in {\mathcal{O}}_{w_{\unicode[STIX]{x1D6FC}1}}^{\times }$ be an arbitrary $w_{\unicode[STIX]{x1D6FC}1}$ -unit. Then there exist $m\in \mathbb{Z}$ , $\unicode[STIX]{x1D716}\in {\mathcal{O}}_{v}^{\times }$ , and $x_{1}\in 1+p^{2}\mathfrak{m}_{w_{\unicode[STIX]{x1D6FC}}}$ such that

Now let $x\in K_{\unicode[STIX]{x1D6FC}}^{\times }\backslash T_{\unicode[STIX]{x1D6FC}}$ be given. Then one has the following possibilities.

  1. (1) $w_{\unicode[STIX]{x1D6FC}1}(x)>0$ . Then $1+x$ is a principal $w_{\unicode[STIX]{x1D6FC}1}$ -unit and, therefore, $1+x\in \unicode[STIX]{x1D6F4}_{\unicode[STIX]{x1D6FC}}$ by assertion (b) above. Since $\unicode[STIX]{x1D6F4}_{\unicode[STIX]{x1D6FC}}\subset T_{\unicode[STIX]{x1D6FC}}$ , we conclude that $1+x\in T_{\unicode[STIX]{x1D6FC}}$ .

  2. (2) $w_{\unicode[STIX]{x1D6FC}1}(x)<0$ . Then $1+x=x(1+x^{-1})$ . Since $w_{\unicode[STIX]{x1D6FC}1}(x^{-1})>0$ , by the discussion above, it follows that $1+x^{-1}\in T_{\unicode[STIX]{x1D6FC}}$ . Therefore, one finally has that $1+x\in xT_{\unicode[STIX]{x1D6FC}}$ .

  3. (3) $w_{\unicode[STIX]{x1D6FC}1}(x)=0$ or, equivalently, $x\in {\mathcal{O}}_{w_{\unicode[STIX]{x1D6FC}1}}^{\times }$ . Let $x=\unicode[STIX]{x1D70B}^{m}\unicode[STIX]{x1D716}x_{1}$ be as given in () above. One has:

$(\unicode[STIX]{x1D6FC})$

if $m>0$ , then $x\in \unicode[STIX]{x1D70B}^{m}\cdot {\mathcal{O}}_{w_{\unicode[STIX]{x1D6FC}}}^{\times }$ and thus $1+x\in {\mathcal{O}}_{w_{\unicode[STIX]{x1D6FC}}}^{\times }$ as well. Hence, by the relation () above, $1+x=\unicode[STIX]{x1D702}_{1}\cdot \unicode[STIX]{x1D702}_{0}$ for some $\unicode[STIX]{x1D702}_{1}\in 1+p^{2}\mathfrak{m}_{w_{\unicode[STIX]{x1D6FC}}}\subset \unicode[STIX]{x1D6F4}_{\unicode[STIX]{x1D6FC}}$ , $\unicode[STIX]{x1D702}_{0}\in {\mathcal{O}}_{v}^{\times }$ . Thus, finally, $1+x\in T_{\unicode[STIX]{x1D6FC}}$ ;

$(\unicode[STIX]{x1D6FD})$

if $m<0$ , then $1+x=x(1+x^{-1})$ , and $x^{-1}$ has value $-m>0$ . But then, by the first case above, $1+x^{-1}\in T_{\unicode[STIX]{x1D6FC}}$ . Hence, $1+x=x(1+x^{-1})\in xT_{\unicode[STIX]{x1D6FC}}$ and thus $1+x\in xT_{\unicode[STIX]{x1D6FC}}$ ;

$(\unicode[STIX]{x1D6FE})$

if $m=0$ , then $x\in {\mathcal{O}}_{w_{\unicode[STIX]{x1D6FC}}}^{\times }\subset T_{\unicode[STIX]{x1D6FC}}$ and thus $x\not \in K_{\unicode[STIX]{x1D6FC}}^{\times }\backslash T_{\unicode[STIX]{x1D6FC}}$ .

For the $T$ -rigidity of $K$ , let $x\in K\backslash T$ be given. If $x\in k$ , then $x\in k\backslash {\mathcal{O}}_{v}^{\times }$ (by the definition of  $T$ ). An easy case by case analysis, namely $v(x)>0$ or $v(x)<0$ , shows that $1+x\in {\mathcal{O}}_{v}^{\times }\cup x{\mathcal{O}}_{v}^{\times }$ , etc. Finally, if $x\not \in k$ , then letting $K_{\unicode[STIX]{x1D6FC}}\subset K$ be the relative algebraic closure of $k(x)$ in $K$ , one has: since $x\in K\backslash T$ , one must have $x\in K_{\unicode[STIX]{x1D6FC}}\backslash T_{\unicode[STIX]{x1D6FC}}$ . Thus, by the discussion above, it follows that $1+x\in T_{\unicode[STIX]{x1D6FC}}\cup xT_{\unicode[STIX]{x1D6FC}}$ and, therefore, $1+x\in T\cup xT$ , etc.

This concludes the proof of Lemma 4. ◻

Step 2. Using Lemma 4 above and applying the Arason–Elman–Jacob theorem 3, we get: there exists a valuation $w$ on $K$ such that $|{\mathcal{O}}_{w}^{\times }/({\mathcal{O}}_{w}\cap T)|\leqslant 2$ and $1+\mathfrak{m}_{w}\subset T$ . Hence, letting ${\mathcal{O}}_{w}^{\times }T\subset K^{\times }$ be the subgroup generated by $T$ and ${\mathcal{O}}_{w}$ , one has ${\mathcal{O}}_{w}/({\mathcal{O}}_{w}\cap T)=({\mathcal{O}}_{w}^{\times }T)/T$ and thus $|({\mathcal{O}}_{w}^{\times }T)/T|\leqslant 2$ . We claim that ${\mathcal{O}}_{w}^{\times }\subset T$ . Indeed, first, one has $k^{\times }={\mathcal{O}}_{v}^{\times }\cdot \unicode[STIX]{x1D70B}^{\mathbb{Z}}$ as direct sum and hence $(k^{\times }/p)/({\mathcal{O}}_{v}^{\times }/p)=\unicode[STIX]{x1D70B}^{\mathbb{Z}/p}$ . Second, by definitions, one has that $K^{\times }/p=\unicode[STIX]{x1D6F4}/p\cdot k^{\times }/p$ and $T/p=\unicode[STIX]{x1D6F4}/p\cdot {\mathcal{O}}_{v}^{\times }/p$ , both of which being direct sums. Thus, finally one gets that

$$\begin{eqnarray}K^{\times }/p=\unicode[STIX]{x1D6F4}/p\cdot k^{\times }/p=\unicode[STIX]{x1D6F4}/p\cdot {\mathcal{O}}_{v}^{\times }/p\cdot \unicode[STIX]{x1D70B}^{\mathbb{Z}/p}=T/p\cdot \unicode[STIX]{x1D70B}^{\mathbb{Z}/p},\end{eqnarray}$$

where the dot denotes direct sums; in particular, one has $|K^{\times }/T|=|(K^{\times }/p)/(T/p)|=p$ . Hence, considering the canonical inclusions of groups $T\subseteq {\mathcal{O}}_{w}^{\times }T\subseteq K^{\times }$ , we get

$$\begin{eqnarray}p=|K^{\times }/T|=|K^{\times }/({\mathcal{O}}_{w}^{\times }T)|\cdot |({\mathcal{O}}_{w}^{\times }T)/T|.\end{eqnarray}$$

Since $|({\mathcal{O}}_{w}^{\times }T)/T|\leqslant 2$ and $2<p$ , it follows that $|({\mathcal{O}}_{w}^{\times }T)/T|=1$ is the only possibility; hence, $T={\mathcal{O}}_{w}^{\times }T$ , and, finally, ${\mathcal{O}}_{w}^{\times }\subseteq T$ . Hence, we conclude that $|K^{\times }/{\mathcal{O}}_{w}^{\times }|\geqslant p$ and therefore we have the following result.

$\bullet$ The valuation $w$ is a non-trivial valuation of $K$ .

Step 3. Recalling that ${\mathcal{O}}_{w}^{\times }\subset T$ , one has that the canonical projection $K^{\times }/{\mathcal{O}}_{w}^{\times }\rightarrow K^{\times }/T$ is surjective. Therefore, if $b\in K$ is a generator of $K^{\times }/T$ , e.g., $b=\unicode[STIX]{x1D70B}\in k_{0}$ has $v_{0}(\unicode[STIX]{x1D70B})=1$ , then $b$ is not a $w$ -unit and $w(b)$ is not divisible by  $p$ in $wK=K^{\times }/{\mathcal{O}}_{w}^{\times }$ and hence $wK$ is not divisible by  $p$ .

For every subfield $K_{\unicode[STIX]{x1D6FC}}\subset K$ as in the proof of Lemma 4, let $v_{\unicode[STIX]{x1D6FC}}:=w|_{K_{\unicode[STIX]{x1D6FC}}}$ be the restriction of $w$ to  $K_{\unicode[STIX]{x1D6FC}}$ . Then ${\mathcal{O}}_{v_{\unicode[STIX]{x1D6FC}}}={\mathcal{O}}_{w}\cap K_{\unicode[STIX]{x1D6FC}}$ and, therefore, ${\mathcal{O}}_{v_{\unicode[STIX]{x1D6FC}}}^{\times }$ is contained in $T_{\unicode[STIX]{x1D6FC}}=T\cap K_{\unicode[STIX]{x1D6FC}}$ .

Lemma 5. The restriction $v_{\unicode[STIX]{x1D6FC}}:=w|_{K_{\unicode[STIX]{x1D6FC}}}$ of $w$ to $K_{\unicode[STIX]{x1D6FC}}$ equals the $p$ -adic valuation $w_{\unicode[STIX]{x1D6FC}}$ .

Proof. By the first part of the proof of Lemma 4, we have that ${\mathcal{O}}_{w_{\unicode[STIX]{x1D6FC}}}^{\times }\subset T_{\unicode[STIX]{x1D6FC}}$ . Since ${\mathcal{O}}_{v_{\unicode[STIX]{x1D6FC}}}^{\times }\subseteq T_{\unicode[STIX]{x1D6FC}}$ as well, it follows that the element-wise product ${\mathcal{O}}_{w_{\unicode[STIX]{x1D6FC}}}^{\times }{\mathcal{O}}_{v_{\unicode[STIX]{x1D6FC}}}^{\times }$ is contained in $T_{\unicode[STIX]{x1D6FC}}$ . Since $T_{\unicode[STIX]{x1D6FC}}$ is a proper subgroup of $K_{\unicode[STIX]{x1D6FC}}^{\times }$ , it follows that ${\mathcal{O}}_{w_{\unicode[STIX]{x1D6FC}}}^{\times }{\mathcal{O}}_{v_{\unicode[STIX]{x1D6FC}}}^{\times }\neq K^{\times }$ as well. The following is well-known valuation theoretical nonsense: let $\mathfrak{n}$ be the largest common ideal of ${\mathcal{O}}_{v_{\unicode[STIX]{x1D6FC}}}$ and ${\mathcal{O}}_{w_{\unicode[STIX]{x1D6FC}}}$ . Then ${\mathcal{O}}:={\mathcal{O}}_{v_{\unicode[STIX]{x1D6FC}}}{\mathcal{O}}_{w_{\unicode[STIX]{x1D6FC}}}$ equals both the localization of ${\mathcal{O}}_{v_{\unicode[STIX]{x1D6FC}}}$ at $\mathfrak{n}$ and the localization of ${\mathcal{O}}_{w_{\unicode[STIX]{x1D6FC}}}$ at $\mathfrak{n}$ . Further, ${\mathcal{O}}$ is the smallest valuation ring of $K$ which contains both ${\mathcal{O}}_{v_{\unicode[STIX]{x1D6FC}}}$ and ${\mathcal{O}}_{w_{\unicode[STIX]{x1D6FC}}}$ ; or, equivalently, ${\mathcal{O}}$ is the valuation ring of the finest common coarsening of $v_{\unicode[STIX]{x1D6FC}}$ and $w_{\unicode[STIX]{x1D6FC}}$ . We now claim that one has

$$\begin{eqnarray}{\mathcal{O}}^{\times }={\mathcal{O}}_{v_{\unicode[STIX]{x1D6FC}}}^{\times }{\mathcal{O}}_{w_{\unicode[STIX]{x1D6FC}}}^{\times }.\end{eqnarray}$$

Indeed, let $v_{\unicode[STIX]{x1D6FC}}^{1}$ and $w_{\unicode[STIX]{x1D6FC}}^{1}$ be the valuations of $\unicode[STIX]{x1D705}(\mathfrak{n}):={\mathcal{O}}/\mathfrak{n}$ defined by ${\mathcal{O}}_{w_{\unicode[STIX]{x1D6FC}}}/\mathfrak{n}$ and ${\mathcal{O}}_{v_{\unicode[STIX]{x1D6FC}}}/\mathfrak{n}$ , respectively. Then $v_{\unicode[STIX]{x1D6FC}}^{1}$ and $w_{\unicode[STIX]{x1D6FC}}^{1}$ are independent, and one has exact sequences

$$\begin{eqnarray}1\rightarrow (1+\mathfrak{n})\rightarrow {\mathcal{O}}_{v_{\unicode[STIX]{x1D6FC}}}^{\times }\rightarrow {\mathcal{O}}_{v_{\unicode[STIX]{x1D6FC}}^{1}}^{\times }\rightarrow 1\quad and\quad 1\rightarrow (1+\mathfrak{n})\rightarrow {\mathcal{O}}_{w_{\unicode[STIX]{x1D6FC}}}^{\times }\rightarrow {\mathcal{O}}_{w_{\unicode[STIX]{x1D6FC}}^{1}}^{\times }\rightarrow 1.\end{eqnarray}$$

Since $v_{\unicode[STIX]{x1D6FC}}^{1}$ and $w_{\unicode[STIX]{x1D6FC}}^{1}$ are independent valuations of $\unicode[STIX]{x1D705}(\mathfrak{n})$ , one has that ${\mathcal{O}}_{v_{\unicode[STIX]{x1D6FC}}^{1}}^{\times }{\mathcal{O}}_{w_{\unicode[STIX]{x1D6FC}}^{1}}^{\times }=\unicode[STIX]{x1D705}(\mathfrak{n})^{\times }$ and therefore

$$\begin{eqnarray}({\mathcal{O}}_{v_{\unicode[STIX]{x1D6FC}}}^{\times }{\mathcal{O}}_{w_{\unicode[STIX]{x1D6FC}}}^{\times })/(1+\mathfrak{n})=\unicode[STIX]{x1D705}(\mathfrak{n})^{\times }.\end{eqnarray}$$

On the other hand, one also has ${\mathcal{O}}^{\times }/(1+\mathfrak{n})=\unicode[STIX]{x1D705}(\mathfrak{n})^{\times }$ . Further, $1+\mathfrak{n}$ is contained in both ${\mathcal{O}}_{v_{\unicode[STIX]{x1D6FC}}}^{\times }$ and ${\mathcal{O}}_{w_{\unicode[STIX]{x1D6FC}}}^{\times }$ and hence we conclude that ${\mathcal{O}}_{v_{\unicode[STIX]{x1D6FC}}}^{\times }{\mathcal{O}}_{w_{\unicode[STIX]{x1D6FC}}}^{\times }={\mathcal{O}}^{\times }$ , as claimed.

By contradiction, suppose that ${\mathcal{O}}_{v_{\unicode[STIX]{x1D6FC}}}\neq {\mathcal{O}}_{w_{\unicode[STIX]{x1D6FC}}}$ . Recall that the valuation ring ${\mathcal{O}}_{w_{\unicode[STIX]{x1D6FC}}}$ has finite residue field and hence ${\mathcal{O}}_{w_{\unicode[STIX]{x1D6FC}}}$ is minimal among the valuation rings of $K_{\unicode[STIX]{x1D6FC}}$ and, in particular, ${\mathcal{O}}_{v_{\unicode[STIX]{x1D6FC}}}$ cannot be contained in ${\mathcal{O}}_{w_{\unicode[STIX]{x1D6FC}}}$ . Therefore, in the above notation, one has that ${\mathcal{O}}_{w_{\unicode[STIX]{x1D6FC}}}\subset {\mathcal{O}}$ strictly or, equivalently, $\mathfrak{n}\subset \mathfrak{m}_{w_{\unicode[STIX]{x1D6FC}}}$ is a strict inclusion. On the other hand, if $b\in k$ is any element of minimal positive value  $1_{v}$ , then $\mathfrak{m}_{w_{\unicode[STIX]{x1D6FC}}}=b{\mathcal{O}}_{w_{\unicode[STIX]{x1D6FC}}}$ and, therefore, $b\not \in \mathfrak{n}$ . Thus, we have

$$\begin{eqnarray}b\in {\mathcal{O}}^{\times }={\mathcal{O}}_{v_{\unicode[STIX]{x1D6FC}}}^{\times }{\mathcal{O}}_{w_{\unicode[STIX]{x1D6FC}}}^{\times }\subseteq T_{\unicode[STIX]{x1D6FC}},\end{eqnarray}$$

contradicting the fact that $w(b)$ generates $wK/w(T)\cong \mathbb{Z}/p$ . Thus, we conclude that one must have ${\mathcal{O}}_{w_{\unicode[STIX]{x1D6FC}}}={\mathcal{O}}_{v_{\unicode[STIX]{x1D6FC}}}$ , and Lemma 5 is proved.◻

We next claim that $w$ is a $p$ -adic valuation of $K$ having $p$ -adic rank $d_{w}=d_{v}$ . Indeed, for $t\in {\mathcal{O}}_{w}$ , let $K_{\unicode[STIX]{x1D6FC}}\subset K$ be the relative algebraic closure of $k(t)$ in $K$ . Then $K_{\unicode[STIX]{x1D6FC}}|k$ has transcendence degree ${\leqslant}1$ and, therefore, $w|_{K_{\unicode[STIX]{x1D6FC}}}=w_{\unicode[STIX]{x1D6FC}}$ is the $p$ -adic valuation $w_{\unicode[STIX]{x1D6FC}}$ by Lemma 5. In particular, if $b\in k$ is such that $v(b)=1_{v}$ is the minimal positive element of $v(k^{\times })$ , it follows that $w_{\unicode[STIX]{x1D6FC}}(b)$ is the minimal positive element of $w_{\unicode[STIX]{x1D6FC}}K_{\unicode[STIX]{x1D6FC}}$ under $vk{\hookrightarrow}w_{\unicode[STIX]{x1D6FC}}K_{\unicode[STIX]{x1D6FC}}$ and, further, $kv=K_{\unicode[STIX]{x1D6FC}}w_{\unicode[STIX]{x1D6FC}}$ is the finite field of cardinality $f_{v}=f_{w_{\unicode[STIX]{x1D6FC}}}$ . One has the following.

  1. (a) $w(b)$ is the minimal positive element of $w(K^{\times })$ . Indeed, for $t\in \mathfrak{m}_{w}$ , in the above notation one has $w(t)=w_{\unicode[STIX]{x1D6FC}}(t)\geqslant w_{\unicode[STIX]{x1D6FC}}(b)=w(b)$ .

  2. (b) $kv=Kw$ and thus $f_{v}=f_{w_{\unicode[STIX]{x1D6FC}}}$ . Indeed, if $t\in {\mathcal{O}}_{w}$ , then in the above notation the residue $\overline{t}\in Kw$ satisfies $\overline{t}\in K_{\unicode[STIX]{x1D6FC}}w_{\unicode[STIX]{x1D6FC}}=kv$ .

Therefore, $w$ is a $p$ -adic valuation of rank $d_{w}=d_{v}$ , which is unique, by the uniqueness of $w_{\unicode[STIX]{x1D6FC}}=w|_{K_{\unicode[STIX]{x1D6FC}}}$ for every subfield $K_{\unicode[STIX]{x1D6FC}}$ . This concludes the proof of Theorem B.

4 Proof of the other announced results

(A) Proof of Theorem A

The following stronger assertion holds (from which Theorem A immediately follows).

Theorem 6. Let $k|\mathbb{Q}_{p}$ be a finite extension containing the $p$ th roots of unity, and let $k_{0}\subseteq k$ be a subfield which is relatively algebraically closed in $k$ . Let $X_{0}$ be a complete smooth $k_{0}$ -variety, and $K_{0}=k_{0}(X)$ be the function field of $X_{0}$ . The following hold.

  1. (1) Every $k$ -rational point $x\in X_{0}$ gives rise to a bouquet of conjugacy classes of liftable sections  $s_{x}^{\prime }$ of  $\operatorname{Gal}(K_{0}^{\prime }|K_{0})\rightarrow \operatorname{Gal}(k_{0}^{\prime }|k_{0})$ above  $x$ .

  2. (2) Suppose that $p>2$ and let $s^{\prime }$ be a liftable section of $\operatorname{Gal}(K_{0}^{\prime }|K_{0})\rightarrow \operatorname{Gal}(k_{0}^{\prime }|k_{0})$ . Then there exists a unique $k$ -rational point $x\in X_{0}$ such that $s^{\prime }$ equals one of the sections $s_{x}^{\prime }$ above.

Proof. The proof is very similar to the proof of Pop [Reference PopPop10, Theorem A]. We repeat here the arguments briefly for the reader’s sake.

To (1): Let $v$ be the valuation of $k$ . We notice that by § 2(C)(b), there exists a bijection from the set of (equivalence classes of) $p$ -adic valuations $w$ of $K_{0}=\unicode[STIX]{x1D705}(X_{0})$ with $d_{w}=d_{v}$ onto the set of bouquets of liftable sections above $k$ -rational points $x$ of $X_{0}$ , which sends each $w$ to the corresponding bouquet of liftable sections above the center $x$ of the canonical coarsening $w_{1}$ on $X=X_{0}\times _{k_{0}}k$ . We conclude by applying assertion (1) of Theorem B.

To (2): Since $k_{0}\subseteq k$ is relatively algebraically closed, it follows that $k_{0}$ is $p$ -adically closed. Let $v$ be the valuation of $k$ and of all subfields of $k$ . Since $k_{0}$ is $p$ -adically closed, we can apply Theorem B and get: for every liftable section $s^{\prime }$ of $\operatorname{Gal}(K_{0}^{\prime }|K_{0})\rightarrow \operatorname{Gal}(k_{0}^{\prime }|k_{0})$ , there exists a unique $p$ -adic valuation $w$ of $K_{0}$ which prolongs $v$ to $K_{0}$ and has $p$ -adic rank equal to the $p$ -adic rank of $v$ , such that $s^{\prime }$ is a section above $w$ . Let $w_{1}$ be the canonical coarsening of $w$ . Then we have the following cases.

Case 1. The valuation $w_{1}$ is trivial.

Then $w$ is a discrete $p$ -adic valuation of $K$ prolonging $v$ to $K$ , having the same residue field and the same value group as $v$ . Equivalently, the completions of $k_{0}$ and $K_{0}$ are equal and hence equal to $k$ . Therefore, $w$ is uniquely determined by the embedding $\imath _{w}:(K_{0},w){\hookrightarrow}(k,v)$ . In geometric terms, $\imath _{w}$ defines a $k$ -rational point $x$ of $X_{0}$ , etc.

Case 2. The valuation $w_{1}$ is not trivial.

Then $w_{1}$ is a $k_{0}$ -rational place of $K_{0}$ and hence defines a $k_{0}$ -rational point $x_{0}$ of $X_{0}$ ; hence, by base change, a $k$ -rational point $x$ of $X_{0}$ as well, etc.◻

(B) Proof of Theorem B0

The proof is almost identical with the one of Theorem B0 from Pop [Reference PopPop10]. The proof of assertion (1) is identical with the proof of assertion (1) of Theorem B; thus, we omit it. Concerning the proof of assertion (2), let $s_{L}^{\prime }:\operatorname{Gal}(k^{\prime }|l)\rightarrow \operatorname{Gal}(K^{\prime }|L)$ be a given liftable section of $\operatorname{pr}_{L}^{\prime }:\operatorname{Gal}(K^{\prime }|L)\rightarrow \operatorname{Gal}(k^{\prime }|l)$ . Then considering the restriction

$$\begin{eqnarray}s^{\prime }:=\operatorname{pr}_{L}^{\prime }|_{\operatorname{ Gal}(k^{\prime }|k)}:\operatorname{Gal}(k^{\prime }|k)\rightarrow \operatorname{Gal}(K^{\prime }|K),\end{eqnarray}$$

it follows by mere definitions that $s^{\prime }$ is a liftable section of $\operatorname{pr}_{K}^{\prime }:\operatorname{Gal}(K^{\prime }|K)\rightarrow \operatorname{Gal}(k^{\prime }|k)$ . Hence, by Theorem B, there exists a unique $p$ -adic valuation $w^{1}$ of $K$ which prolongs the $p$ -adic valuation $v_{k}$ of $k$ to $K$ and has $d_{w^{1}}=d_{v_{k}}$ , and $s^{\prime }=s_{w^{1}}$ in the usual way.

Let $w=w^{1}|_{L}$ be the restriction of $w^{1}$ to  $L$ . Then $w$ prolongs the valuation $v$ of $l$ to $L$ . We claim that $w^{1}$ is the unique prolongation of $w$ to  $K$ . Indeed, let $w^{2}:=w^{1}\circ \unicode[STIX]{x1D70E}_{0}$ , with $\unicode[STIX]{x1D70E}_{0}\in \operatorname{Gal}(k|l)$ , be a further prolongation of $w$ to $K$ . Then, if $(w^{i})^{\prime }$ is a prolongation of $w^{i}$ to $K^{\prime }$ , $i=1,2$ , and $\unicode[STIX]{x1D70E}\in \operatorname{im}(s_{L}^{\prime })$ is a preimage of $\unicode[STIX]{x1D70E}_{0}$ , then $(w^{2})^{\prime }:=(w^{1})^{\prime }\circ \unicode[STIX]{x1D70E}$ is a prolongation of $w^{2}$ to $K^{\prime }$ . Therefore, if $Z_{w^{1}}\subset \operatorname{Gal}(K^{\prime }|K)$ is the decomposition group above $w^{1}$ , then $Z_{w^{2}}:=\unicode[STIX]{x1D70E}Z_{w^{1}}\unicode[STIX]{x1D70E}^{-1}$ is the decomposition group above $w^{2}$ . On the other hand, $\operatorname{im}(s^{\prime })\subseteq Z_{w^{1}}$ by Theorem B. Since $\operatorname{Gal}(k^{\prime }|k)$ is a normal subgroup of $\operatorname{Gal}(k^{\prime }|l)$ , it follows that $\operatorname{im}(s^{\prime })$ is normal in $\operatorname{im}(s_{L}^{\prime })$ . Hence, if $\unicode[STIX]{x1D70E}\in \operatorname{im}(s_{L}^{\prime })$ , it follows that $\unicode[STIX]{x1D70E}(\operatorname{im}(s^{\prime }))\unicode[STIX]{x1D70E}^{-1}=\operatorname{im}(s^{\prime })$ and, therefore, one has

$$\begin{eqnarray}Z_{w^{1}}\supseteq \operatorname{im}(s^{\prime })=\unicode[STIX]{x1D70E}(\operatorname{im}(s^{\prime }))\unicode[STIX]{x1D70E}^{-1}\subseteq \unicode[STIX]{x1D70E}Z_{w^{1}}\unicode[STIX]{x1D70E}^{-1}=Z_{w^{2}}.\end{eqnarray}$$

Hence, $\operatorname{im}(s^{\prime })\subset Z_{w^{1}},Z_{w^{2}}$ ; thus, by the uniqueness assertion of Theorem B, we must have $w^{1}=w^{2}$ . Equivalently, if $\unicode[STIX]{x1D70E}\in \operatorname{im}(s_{L}^{\prime })$ , then $\unicode[STIX]{x1D70E}Z_{w^{1}}\unicode[STIX]{x1D70E}^{-1}=Z_{w^{1}}$ and therefore $\unicode[STIX]{x1D70E}\in Z_{w^{1}}$ . Finally, we conclude that $d_{w}=d_{v}$ , as claimed, and this concludes the proof of Theorem B0 .

(C) Proof of Theorem A0

The following stronger assertion holds (from which Theorem A0 follows immediately).

Theorem 7. Let $l|\mathbb{Q}_{p}$ be a finite extension. Let $l_{0}\subset l$ be a relatively algebraically closed subfield, and $k_{0}|l_{0}$ a finite Galois extension with $\unicode[STIX]{x1D707}_{p}\subset k_{0}$ . Let $Y_{0}$ be a complete smooth geometrically integral variety over $l_{0}$ . Let $L_{0}=\unicode[STIX]{x1D705}(Y_{0})$ the function field of $Y_{0}$ , and $K_{0}=L_{0}k_{0}$ .

  1. (1) Every $l$ -rational point $y\in Y_{0}$ gives rise to a bouquet of conjugacy classes of liftable sections  $s_{y}^{\prime }$ of  $\operatorname{Gal}(K_{0}^{\prime }|L_{0})\rightarrow \operatorname{Gal}(k_{0}^{\prime }|l_{0})$ above $y$ .

  2. (2) Let $p>2$ and $s^{\prime }:\operatorname{Gal}(k_{0}^{\prime }|l_{0})\rightarrow \operatorname{Gal}(K_{0}^{\prime }|L_{0})$ be a liftable section of  $\operatorname{Gal}(K_{0}^{\prime }|L_{0})\rightarrow \operatorname{Gal}(k_{0}^{\prime }|l_{0})$ . Then there exists a unique $l$ -rational point $y\in Y_{0}(l)$ such that $s^{\prime }$ equals one of the sections $s_{y}^{\prime }$ introduced in point (1) above.

Proof. The proof is identical to the proof of Theorem A above, with the only difference that one uses Theorem B0 instead of Theorem B. ◻

Acknowledgements

I would like to thank among others Jordan Ellenberg, Moshe Jarden, Dan Haran, Minhyong Kim, Jochen Koenigsmann, Jakob Stix, Tamás Szamuely, and Adam Topaz for useful discussions concerning the topic and the techniques of this manuscript. Parts of this research were partially performed while visiting MPIM Bonn in May 2012 and HIM Bonn in spring 2013. I would like to thank these institutions for the wonderful research environments and the excellent working conditions.

References

Arason, J., Elman, R. and Jacob, B., Rigid elements, valuations, and realization of Witt rings , J. Algebra 110 (1987), 449467.Google Scholar
Ax, J. and Kochen, S., Diophantine problems over local fields III. Decidable fields , Ann. of Math. (2) 83 (1966), 437456.Google Scholar
Efrat, I., Construction of valuations from K-theory , Math. Res. Lett. 6 (1999), 335343.CrossRefGoogle Scholar
Faltings, G., Curves and their fundamental groups (following Grothendieck, Tamagawa and Mochizuki) , Astérisque 252 (1998), , Séminaire Bourbaki, exposé 840.Google Scholar
Grothendieck, A., Letter to G. Faltings (1983); see [SL98].Google Scholar
Grothendieck, A., Esquisse d’un programme (1984); see [SL98].Google Scholar
Koenigsmann, J., From p-rigid elements to valuations (with a Galois-characterization of p-adic fields) , J. reine angew. Math. 465 (1995), 165182; with an appendix by F. Pop.Google Scholar
Koenigsmann, J., On the ‘section conjecture’ in anabelian geometry , J. reine angew. Math. 588 (2005), 221235.Google Scholar
Kuhlmann, F.-V., Pank, M. and Roquette, P., Immediate and purely wild extensions of valued fields , Manuscripta Math. 55 (1986), 3967.Google Scholar
Pop, F., Galoissche Kennzeichnung p-adisch abgeschlossener Körper , J. reine angew. Math. 392 (1988), 145175.Google Scholar
Pop, F., On the birational p-adic section conjecture , Compos. Math. 146 (2010), 621637.CrossRefGoogle Scholar
Prestel, A. and Roquette, P., Formally p-adic fields, Lecture Notes in Mathematics, vol. 1050 (Springer, 1985).Google Scholar
Schneps, L. and Lochak, P. (eds), Geometric Galois actions I, London Mathematical Society Lecture Note Series, vol. 242 (Cambridge University Press, 1998).Google Scholar
Stix, J., Birational p-adic Galois sections in higher dimensions , Israel J. Math. 198 (2013), 4961.Google Scholar
Szamuely, T., Groupes de Galois de corps de type fini (d’après Pop) , Astérisque 294 (2004), 403431.Google Scholar
Topaz, A., Commuting-liftable subgroups of Galois groups II , J. reine angew. Math., doi:10.1515/crelle-2014-0115 (published online 2015-01-27).Google Scholar
Ware, R., Valuation rings and rigid elements in fields , Canad. J. Math. 33 (1981), 13381355.Google Scholar