Hostname: page-component-8448b6f56d-42gr6 Total loading time: 0 Render date: 2024-04-24T21:45:46.701Z Has data issue: false hasContentIssue false

OPTIMAL LOWER BOUND ON THE SUPREMAL STRICT p-NEGATIVE TYPE OF A FINITE METRIC SPACE

Published online by Cambridge University Press:  19 August 2009

ANTHONY WESTON*
Affiliation:
Department of Mathematics and Statistics, Canisius College, Buffalo, NY 14208, USA (email: westona@canisius.edu)
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Determining meaningful lower bounds on the supremal strict p-negative type of classes of finite metric spaces is a difficult nonlinear problem. In this paper we use an elementary approach to obtain the following result: given a finite metric space (X,d) there is a constant ζ>0, dependent only on n=∣X∣ and the scaled diameter 𝔇=(diamX)/min{d(x,y)∣x⁄=y} of X (which we may assume is >1), such that (X,d) has p-negative type for all p∈[0,ζ] and strict p-negative type for all p∈[0,ζ). In fact, we obtain A consideration of basic examples shows that our value of ζ is optimal provided that 𝔇≤2. In other words, for each 𝔇∈(1,2] and natural number n≥3, there exists an n-point metric space of scaled diameter 𝔇 whose supremal strict p-negative type is exactly ζ. The results of this paper hold more generally for all finite semi-metric spaces since the triangle inequality is not used in any of the proofs. Moreover, ζ is always optimal in the case of finite semi-metric spaces.

Type
Research Article
Copyright
Copyright © Australian Mathematical Publishing Association Inc. 2009

References

[1]Bretagnolle, J., Dacunha-Castelle, D. and Krivine, J.-L., ‘Lois stables et espaces L p’, Ann. Inst. H. Poincaré 2 (1966), 231259.Google Scholar
[2]Deza, M. M. and Laurent, M., Geometry of Cuts and Metrics, Algorithms and Combinatorics, 15 (Springer, Berlin, 1997).CrossRefGoogle Scholar
[3]Doust, I. and Weston, A., ‘Enhanced negative type for finite metric trees’, J. Funct. Anal. 254 (2008), 23362364 (see arXiv:0705.0411v2 for an extended version of this paper).Google Scholar
[4]Doust, I. and Weston, A., ‘Corrigendum to “Enhanced negative type for finite metric trees”’, J. Funct. Anal. 255 (2008), 532533.Google Scholar
[5]Dranishnikov, A. N., Gong, G., Lafforgue, V. and Yu, G., ‘Uniform embeddings into Hilbert space and a question of Gromov’, Canad. Math. Bull. 45 (2002), 6070.Google Scholar
[6]Enflo, P., ‘On a problem of Smirnov’, Ark. Mat. 8 (1969), 107109.Google Scholar
[7]Gromov, M., Asymptotic Invariants of Infinite Groups, Proceedings of Symposia Sussex, 1991: II, London Mathematical Society Lecture Notes, 182 (Cambridge University Press, Cambridge, 1993).Google Scholar
[8]Hjorth, P. G., Kokkendorff, S. L. and Markvorsen, S., ‘Hyperbolic spaces are of strictly negative type’, Proc. Amer. Math. Soc. 130 (2001), 175181.Google Scholar
[9]Hjorth, P., Lisoněk, P., Markvorsen, S. and Thomassen, C., ‘Finite metric spaces of strictly negative type’, Linear Algebra Appl. 270 (1998), 255273.Google Scholar
[10]Khamsi, M. A. and Kirk, W. A., An Introduction to Metric Spaces and Fixed Point Theory, Pure and Applied Mathematics (Wiley-Interscience, New York, 2001).Google Scholar
[11]Khot, S. and Vishnoi, N., ‘The unique games conjecture, integrability gap for cut problems and embeddings of negative type metrics into 1’, in: 46th Annual Symposium on Foundations of Computer Science (IEEE Computer Society Press, Los Alamitos, CA, 2005), pp. 5362.Google Scholar
[12]Lee, J. R. and Naor, A., ‘ L p metrics on the Heisenberg group and the Goemans–Linial conjecture’, Preprint (see www.cs.washington.edu/homes/jrl/papers/gl-heisenberg.pdf for example).Google Scholar
[13]Lennard, C. J., Tonge, A. M. and Weston, A., ‘Generalized roundness and negative type’, Michigan Math. J. 44 (1997), 3745.Google Scholar
[14]Menger, K., ‘Die Metrik des Hilbert–Raumes’, Akad. Wiss. Wien Abh. Math.-Natur. K1 65 (1928), 159160.Google Scholar
[15]Moore, E. H., ‘On properly positive Hermitian matrices’, Bull. Amer. Math. Soc. 23 (1916), 6667.Google Scholar
[16]Prassidis, S. and Weston, A., ‘Manifestations of non linear roundness in analysis, discrete geometry and topology’, in: Limits of Graphs in Group Theory and Computer Science (EPFL Press, Lausanne, 2009).Google Scholar
[17]Schoenberg, I., ‘Remarks to Maurice Fréchet’s article Sur la définition axiomatique d’une classe d’espaces distanciés vectoriellement applicable sur l’espace de Hilbert’, Ann. of Math. (2) 36 (1935), 724732.CrossRefGoogle Scholar
[18]Schoenberg, I., ‘Metric spaces and positive definite functions’, Trans. Amer. Math. Soc. 44 (1938), 522536.Google Scholar
[19]Wells, J. H. and Williams, L. R., ‘Embeddings and extensions in analysis’, Ergeb. Math. Grenzgeb. 84 (1975), vii+1108.Google Scholar
[20]Weston, A., ‘On the generalized roundness of finite metric spaces’, J. Math. Anal. Appl. 192 (1995), 323334.Google Scholar