Hostname: page-component-8448b6f56d-m8qmq Total loading time: 0 Render date: 2024-04-24T12:27:14.625Z Has data issue: false hasContentIssue false

Absence of Herbicide Cross-Resistance in Two Atrazine-Resistant Velvetleaf (Abutilon theophrasti) Biotypes

Published online by Cambridge University Press:  12 June 2017

James A. Gray
Affiliation:
Environ. Toxicol. Ctr., Univ. Wisconsin, Madison, WI 53706
David E. Stoltenberg
Affiliation:
Dep. Agron., Univ. Wisconsin, Madison, WI 53706
Nelson E. Balke
Affiliation:
Dep. Agron. and Environ. Toxicol. Ctr., Univ. Wisconsin, Madison, WI 53706

Abstract

Field and greenhouse research was conducted to quantify the level of resistance to atrazine in Wisconsin (WRB1) and Maryland (MRB) velvetleaf biotypes and to determine cross-resistance of the WRB1 and MRB biotypes to other selected herbicides as compared to a Wisconsin atrazine-susceptible velvetleaf accession (WSA1). In field studies, the WRB1 and MRB biotypes survived atrazine applied POST at dosages as high as 4.5 kg ha−1. In contrast, the WSA1 accession had 50% survival following a 1.1 kg ha−1 POST atrazine application. The WRB1 biotype demonstrated neither cross-resistance nor negative cross-resistance to alachlor, bentazon, bromoxynil, cyanazine, dicamba, linuron, metribuzin, or thifensulfuron. The MRB biotype demonstrated neither cross-resistance nor negative cross-resistance to alachlor, bentazon, dicamba, metribuzin, or thifensulfuron; slight negative cross-resistance was demonstrated to bromoxynil, cyanazine, and linuron. In greenhouse studies, the WRB1 and MRB biotypes were approximately 100-fold more resistant to atrazine than the WSA1 accession; the WRB1 and MRB biotypes demonstrated neither cross-resistance nor negative cross-resistance to alachlor, ametryn, bentazon, bromoxynil, cyanazine, dicamba, linuron, metribuzin, pendimethalin, terbacil, or thifensulfuron. Absence of cross-resistance to cyanazine, ametryn, metribuzin, and terbacil in the WRB1 and MRB biotypes of velvetleaf is in contrast to most other atrazine-resistant weed biotypes.

Type
Physiology, Chemistry, and Biochemistry
Copyright
Copyright © 1995 by the Weed Science Society of America 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

LITERATURE CITED

1. Anderson, M. P. and Gronwald, J. W. 1991. Atrazine resistance in a velvetleaf (Abutilon theophrasti) biotype due to enhanced glutathione S-transferase activity. Plant Physiol. 96:104109.CrossRefGoogle Scholar
2. Arntzen, C. J., Ditto, C. L., and Brewer, P. E. 1979. Chloroplast membrane alterations in triazine-resistant Amaranthus retroflexus biotypes. Proc. Natl. Acad. Sci. 76:278282.CrossRefGoogle ScholarPubMed
3. Arntzen, C. J., Pfister, K., and Steinback, K. E. 1982. The mechanism of chloroplast triazine resistance: alterations in the site of herbicide action. Pages 185214 in LeBaron, H. M. and Gressel, J., eds. Herbicide Resistance in Plants. John Wiley and Sons, New York.Google Scholar
4. Bandeen, J. D., Stephenson, G. R., and Cowett, E. R. 1982. Discovery and distribution of herbicide-resistant weeds in North America. Pages 930 in LeBaron, H. M. and Gressel, J., eds. Herbicide Resistance in Plants. John Wiley and Sons, New York.Google Scholar
5. Box, G. E. and Cox, D. R. 1964. An analysis of transformations. J. R. Stat. Soc. B26:211252.Google Scholar
6. Boydston, R. A. and Al-Khatib, K. 1992. Terbacil and bromacil cross-resistance in Powell amaranth (Amaranthus powellii). Weed Sci. 40:513516.CrossRefGoogle Scholar
7. Fuerst, E. P., Arntzen, C. J., Pfister, K., and Penner, D. 1986. Herbicide cross-resistance in triazine-resistant biotypes of four species. Weed Sci. 34:344353.CrossRefGoogle Scholar
8. Gressel, J. and Segel, L. A. 1990. Herbicide rotations and mixtures: effective strategies to delay resistance. Pages 430458 in Green, M. B., LeBaron, H. M., and Moberg, W. K., eds. Managing Resistance to Agrochemicals: From Fundamental Research to Practical Strategies. ACS Symp. Ser. 421, Washington, DC.CrossRefGoogle Scholar
9. Gronwald, J. W., Andersen, R. N., and Yee, C. 1989. Atrazine resistance in velvetleaf (Abutilon theophrasti) due to enhanced atrazine detoxification. Pestic. Biochem. Physiol. 34:149163.CrossRefGoogle Scholar
10. Hirschberg, J. and McIntosh, L. 1983. Molecular basis of herbicide resistance in Amaranthus hybridus . Science. 222:13461349.CrossRefGoogle ScholarPubMed
11. Kudsk, P., Mathiassen, S. K., and Cotterman, J. C. 1995. Sulfonylurea resistance in Steilaria media [L.] Vill. Weed Res. (in press).CrossRefGoogle Scholar
12. Moss, S. R. and Rubin, B. 1993. Herbicide-resistant weeds: a worldwide perspective. J. Agric. Sci. 120:141148.CrossRefGoogle Scholar
13. Oettmeier, W., Masson, K., Fedtke, C., Konze, J., and Schmidt, R. R. 1982. Effect of different photosystem II inhibitors on chloroplasts isolated from species either susceptible or resistant toward s-triazine herbicides. Pestic. Biochem. Physiol. 18:357367.CrossRefGoogle Scholar
14. Pfister, K. and Arntzen, C. J. 1979. The mode of action of photosystem II-specific inhibitors in herbicide-resistant weed biotypes. Z. Naturforsch. 34:9961009.CrossRefGoogle Scholar
15. Radosevich, S. R., Steinback, K. E., and Arntzen, C. J. 1979. Effect of photosystem II inhibitors on thylakoid membranes of two common groundsel (Senecio vulgaris) biotypes. Weed Sci. 27:216218.CrossRefGoogle Scholar
16. Ritter, R. L. 1986. Triazine resistant velvetleaf and giant foxtail control in no-tillage corn. Proc. Northeast. Weed Sci. Soc. 40:5052.Google Scholar
17. Ryan, G. F. 1970. Resistance of common groundsel to simazine and atrazine. Weed Sci. 18:614616.CrossRefGoogle Scholar
18. Streibig, J. C., Rudemo, M., and Jensen, J. E. 1993. Dose-response curves and statistical models. Pages 2955 in Streibig, J. C. and Kudsk, P., eds. Herbicide Bioassays. CRC Press. Boca Raton.Google Scholar