Hostname: page-component-8448b6f56d-tj2md Total loading time: 0 Render date: 2024-04-18T04:33:17.187Z Has data issue: false hasContentIssue false

Pseudoelasticity of D03-Type Fe3Al and Fe3Ga-Based Alloys

Published online by Cambridge University Press:  08 March 2011

Hiroyuki Y. Yasuda
Affiliation:
Division of Materials and Manufacturing Science, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan
Yukichi Umakoshi
Affiliation:
National Institute for Materials Science, 1-2-1 Sengen, Tsukuba, Ibaraki 305-0047, Japan
Get access

Abstract

The pseudoelastic behavior of Fe3Al and Fe3Ga alloys with the D03 structure is reviewed. In general, pseudoelasticity of shape memory alloys is based on a thermoelastic martensitic transformation. However, pseudoelasticity regardless of the martensitic transformation is found to take place in D03-ordered Fe3Al and Fe3Ga alloys. For instance, a 1/4<111> superpartial dislocation in Fe3Al alloys moves independently dragging an antiphase boundary (APB). During unloading, the APB pulls back the superpartial to decrease its energy resulting in pseudoelasticity, which is called “APB pseudoelasticity”. Moreover, D03-type Fe3Ga alloys were found to demonstrate three types of pseudoelasticity based on the dislocation motion, twinning and martensitic transformation depending on the chemical composition, degree of D03 order, loading axis, stress sense and deformation temperature. The mechanism of the pseudoelasticities in the D03-type intermetallics is discussed based on some in situ observations. The effects of chemical composition, deformation temperature and crystal orientation on the pseudoelastic behaviors are also discussed.

Type
Research Article
Copyright
Copyright © Materials Research Society 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Otsuka, K. and Wayman, C. M., Shape Memory Materials, (Cambridge University Press, 1998), pp.27.Google Scholar
2. Guedou, J. Y., Paliard, M. and Rieu, J., Scripta Metall., 10, 631 (1976).Google Scholar
3. Guedou, J. Y. and Rieu, J., Scripta Metall., 12, 927 (1978).Google Scholar
4. Kubin, L. P., Fourdeux, A., Guedou, J. Y. and Rieu, J., Phil. Mag., A46, 357 (1982).Google Scholar
5. Nosova, G. I., Polyakova, N. A. and Novikova, Y. E., Phys. Met. Metall., 61, 151 (1986).Google Scholar
6. Brinck, A., Engelke, C. and Neuhäuser, H., Scripta Metall., 37, 569 (1997).Google Scholar
7. Langmaack, E. and Nembach, E., Phil. Mag., 79, 2359 (1999).Google Scholar
8. Yasuda, H. Y., Nakano, K., Ueda, M. and Umakoshi, Y., Mater. Sci Forum, 426-432, 1801 (2003).Google Scholar
9. Yasuda, H. Y., Nakano, K., Nakajima, T., Ueda, M. and Umakoshi, Y., Acta Mater., 51, 5101 (2003).Google Scholar
10. Kabra, S., Bei, H., Brown, D. W., Bourke, M. A. M. and George, E. P., Mat. Res. Soc. Symp. Proc., 842, 21 (2005).Google Scholar
11. Yasuda, H. Y., Nakajima, T., Nakano, K., Yamaoka, K., Ueda, M. and Umakoshi, Y., Acta Mater., 53, 5343 (2005).Google Scholar
12. Yasuda, H. Y., Nakajima, T., Murakami, S., Ueda, M. and Umakoshi, Y., Intermetallics, 14, 1221 (2006).Google Scholar
13. Yasuda, H. Y., Yamaoka, K. and Umakoshi, Y., Mater. Sci. Forum, 512, 25 (2006).Google Scholar
14. Yasuda, H. Y., Nakajima, T. and Umakoshi, Y., Intermetallics, 15, 819 (2007).Google Scholar
15. Yasuda, H. Y., Kase, T., Minamiguchi, S., Yokoyama, A., Umakoshi, Y., Bronsveld, P. M. and De Hosson, J. Th. M., Mater. Sci. Forum, 561-565, 391 (2007).Google Scholar
16. Yasuda, H. Y., Yamaoka, K., Oda, Y. and Umakoshi, Y., Scripta Mater., 59, 738 (2008).Google Scholar
17. Yasuda, H. Y., Kouzai, K., Kawamura, Y. and Umakoshi, Y., ISIJ Inter., 50, 147 (2010).Google Scholar
18. Yasuda, H. Y. and Umakoshi, Y., Intermetallics, 18, 1273 (2010).Google Scholar
19. Yasuda, H. Y., Aoki, M. and Umakoshi, Y., Scripta Mater., 53, 253 (2005).Google Scholar
20. Yasuda, H. Y., Aoki, M. and Umakoshi, Y., Acta Mater., 55, 2407 (2007).Google Scholar
21. Yasuda, H. Y., Oda, Y., Aoki, M., Fukushima, K. and Umakoshi, Y., Intermetallics, 16, 1298 (2008).Google Scholar
22. Yasuda, H. Y., Fukushima, K., Aoki, M. and Umakoshi, Y., ISIJ Inter., 48, 1014 (2008).Google Scholar
23. Yasuda, H. Y., Aoki, M., Oda, Y., Fukushima, K. and Umakoshi, Y., J. Phys. Conf. Series, 165, 012053 (2009).Google Scholar
24. Yasuda, H. Y., Kishimoto, T. and Umakoshi, Y., Mater. Trans., (2010) in press. Google Scholar
25. Ikeda, O., Ohnuma, I., Kainuma, R. and Ishida, K., Intermetallics, 9, 755 (2001).Google Scholar
26. Marcinkowski, M. J. and Brown, N., Acta Metall., 9, 764 (1961).Google Scholar
27. Leamy, H. J. and Kayser, F. X., Phys. Stat. Sol., 34, 765 (1969).Google Scholar
28. Yoshimi, K., Terashima, H. and Hanada, S., Mater. Sci. Eng. A, 194, 53 (1995).Google Scholar
29. Yasuda, H. Y., Nakajima, T. and Umakoshi, Y., Scripta Mater., 55, 859 (2006).Google Scholar
30. Brink, A. and Neuhäuser, H., Mater. Sci. Eng. A, 387-389, 969 (2004).Google Scholar
31. Duesbery, M. S. and Vitek, V., Acta Mater., 5, 1481 (1998).Google Scholar
32. Yasuda, H. Y., Fukushima, K., Koizumi, Y., Minamino, Y. and Umakoshi, Y., ISIJ Inter., 49, 1630 (2009).Google Scholar
33. Humbeeck, J. V., Stoiber, J., Delaey, L. and Gotthard, R., Z. Metallkd., 86, 3 (1995).Google Scholar
34. Ikeda, O., Kainuma, R., Ohnuma, I., Fukamichi, K. and Ishida, K., J. Alloys Comp., 347, 198 (2002).Google Scholar
35. Christian, J. W. and Laughlin, D. E., Acta Metall., 36, 1617 (1988).Google Scholar
36. Bolling, G. F. and Richman, R. H., Acta Metall., 13, 723 (1965).Google Scholar
37. Laves, F., Naturwissenschaften, 34, 765 (1969).Google Scholar