Hostname: page-component-8448b6f56d-tj2md Total loading time: 0 Render date: 2024-04-24T02:58:22.570Z Has data issue: false hasContentIssue false

Millisecond Kinetics of PbS Quantum Dots Using Droplet-based Microfluidics with On-line Absorption and Fluorescence Spectroscopy

Published online by Cambridge University Press:  10 June 2015

Ioannis Lignos
Affiliation:
Institute for Chemical & Bioengineering, Department of Chemistry & Applied Biosciences, ETH Zürich, Vladimir-Prelog-Weg 1, 8093
Stavros Stavrakis
Affiliation:
Institute for Chemical & Bioengineering, Department of Chemistry & Applied Biosciences, ETH Zürich, Vladimir-Prelog-Weg 1, 8093
Ardita Kilaj
Affiliation:
Institute for Chemical & Bioengineering, Department of Chemistry & Applied Biosciences, ETH Zürich, Vladimir-Prelog-Weg 1, 8093
Andrew deMello
Affiliation:
Institute for Chemical & Bioengineering, Department of Chemistry & Applied Biosciences, ETH Zürich, Vladimir-Prelog-Weg 1, 8093
Get access

Abstract

We report a novel approach for the on-line characterization of nucleation and growth kinetics of lead sulfide (PbS) quantum dots using droplet-based microfluidics. Monodisperse NIR-emitting PbS with optical bandgap between 680 to 1200 nm can be formed rapidly using two reaction schemes at different operating temperatures between 70 and 130°C and the temporal evolution of the absorption and fluorescence spectra are monitored in real-time using a microfluidic platform with an on-line absorption and fluorescence optical system. Therefore, this microfluidic platform is able to provide quantitative information on a millisecond (ms) time frame regarding the size, size distribution, concentration and emission characteristics of the generated nuclei and particles. To our knowledge, this represents the first microfluidic approach for the study of the nucleation and growth in high-temperature colloidal crystallization using in-situ absorption and photoluminescence spectroscopy.

Type
Articles
Copyright
Copyright © Materials Research Society 2015 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Talapin, D.V., Lee, J.-S., Kovalenko, M.V., and Shevchenko, E.V., Chemical Reviews 110, 389 (2010).CrossRefGoogle Scholar
Howes, P.D., Chandrawati, R., and Stevens, M.M., Science 346, 1247390 (2014).CrossRefGoogle Scholar
van Veggel, F. C. J. M, Chem. Mater. 26, 111 (2014).CrossRefGoogle Scholar
Sun, T., Zhang, Y.S., Pang, B., Hyun, D.C., Yang, M., and Xia, Y., Angew. Chem. Int. Ed. 53, 12320 (2014).Google Scholar
Kovalenko, M.V., Manna, L., Cabot, A., Hens, Z., Talapin, D.V., Kagan, C.R., Klimov, V.I., Rogach, A.L., Reiss, P., Milliron, D.J., Guyot-Sionnnest, P., Konstantatos, G., Parak, W.J., Hyeon, T., Korgel, B.A., Murray, C.B., and Heiss, W., ACS Nano 9, 1012 (2015).CrossRefGoogle Scholar
Thanh, N.T.K., Maclean, N., and Mahiddine, S., Chemical Reviews 114, 7610 (2014).CrossRefGoogle Scholar
Phillips, T.W., Lignos, I.G., Maceiczyk, R.M., deMello, A.J., and deMello, J.C., Lab on a Chip 14, 3172 (2014).CrossRefGoogle Scholar
Lignos, I., Protesescu, L., Stavrakis, S., Piveteau, L., Speirs, M.J., Loi, M.A., Kovalenko, M.V., and deMello, A.J., Chem. Mater. 26, 2975 (2014).CrossRefGoogle Scholar
Maceiczyk, R.M., Lignos, I.G., and deMello, A.J., Current Opinion in Chemical Engineering 8, 29 (2015).CrossRefGoogle Scholar
Cademartiri, L., Montanari, E., Calestani, G., Migliori, A., Guagliardi, A., Ozin, G. A., Am, J.. Chem. Soc. 128, 10337 (2006).CrossRefGoogle Scholar
Yu, W. W., Qu, L., Guo, W., Peng, X., Chem. Mater. 16, 560 (2004).CrossRefGoogle Scholar