Hostname: page-component-8448b6f56d-sxzjt Total loading time: 0 Render date: 2024-04-23T15:55:53.470Z Has data issue: false hasContentIssue false

Piezoresistive Sensors on Plastic Substrates Using Doped Microcrystalline Silicon

Published online by Cambridge University Press:  17 March 2011

P. Alpuim
Affiliation:
Instituto de Engenharia de Sistemas e Computadores (INESC), Rua Alves Redol, 9, 1000-029 Lisbon, Portugal Department of Materials Engineering, Instituto Superior Técnico, Av. Rovisco Pais, 1049-001 Lisbon, Portugal
V. Chu
Affiliation:
Instituto de Engenharia de Sistemas e Computadores (INESC), Rua Alves Redol, 9, 1000-029 Lisbon, Portugal
J. P. Conde
Affiliation:
Department of Materials Engineering, Instituto Superior Técnico, Av. Rovisco Pais, 1049-001 Lisbon, Portugal
Get access

Abstract

The piezoresistive behavior of optimized n-type and p-type microcrystalline silicon films deposited on polyethylene terephthalate plastic substrate by hot-wire and radio-frequency plasma-enhanced chemical vapor deposition, at a substrate temperature of 100 °C, is studied. A 4-point bending jig allowed the application of positive and negative strains in the films. Repeated measurements of the relative changes in the resistance of the samples during the strained condition showed reversible behavior, with p-type microcrystalline films having positive gauge factor in the range from 25 to 30 and n-type [.proportional]c-Si:H films having negative values of gauge factor from -40 to -10. The induced strain in the films was in the range between 0 and ±0.3%. A sensor utilizing the piezoresistive property of doped [.proportional]c-Si:H was used to map a contour with the shape of an Archimedes' spiral.

Type
Research Article
Copyright
Copyright © Materials Research Society 2001

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1 Smith, C. S., Phys. Rev. 94, 42 (1954).Google Scholar
2 Goroff, I. and Kleinman, L., Phys. Rev. 132, 1080 (1961).Google Scholar
3 Pfann, W. G. and Thurston, R. N., J. Appl. Phys. 32, 2008 (1961).10.1063/1.1728280Google Scholar
4 Tufte, O. N., Chapman, P.W. and Long, D., J. Appl. Phys. 33, 3322 (1962).10.1063/1.1931164Google Scholar
5 Yang, C.-S., Smith, L. L., Arthur, C. B., Parsons, G. N., J. Vac.Sci. Technol. B 18, 683 (2000).10.1116/1.591259Google Scholar
6 Boucinha, M., Brogueira, P., Chu, V. and Conde, J. P., Appl. Phys. Lett. 77, 907 (2000).10.1063/1.1306912Google Scholar
7 Lumelsky, V., Shur, M. S., Wagner, S., in Sensitive Skin (World Scientific Publ. Comp., 2000).Google Scholar
8 Elwenspoek, M., Wiegerink, R., Mechanical Microsensors, (Springer, New York, 2001) p.87.Google Scholar
9 Nishida, S., Konagai, M. and Takahashi, K., Jpn. J. Appl. Phys. 25, 17 (1986).Google Scholar
10. Alpuim, P., Chu, V. and Conde, J.P., Mater. Res. Soc. Symp. Proc. 609, (2000) (in press).Google Scholar
11 Alpuim, P., Chu, V. and Conde, J.P., J. Vac. Sci. Technol. B, (2001) (in press).Google Scholar
12 Timoshenko, S.P., Goodier, J.N., Theory of Elasticity, 3rd ed. (McGraw-Hill, Singapore, 1970) pp. 288290.Google Scholar
13 Davidge, R. W., Mechanical Behaviour of Ceramics (Cambridge University Press, Cambridge, 1980).Google Scholar
14 Wojciechowski, P. H. and Mendolia, M. S., J. Vac. Sci.Technol. A 7,1282 (1989).Google Scholar