Hostname: page-component-8448b6f56d-t5pn6 Total loading time: 0 Render date: 2024-04-19T06:34:41.063Z Has data issue: false hasContentIssue false

Tolerance of Hooker's Evening Primrose (Oenothera elata) Transplants to Postemergence Herbicides

Published online by Cambridge University Press:  20 January 2017

Amber N. Bates
Affiliation:
Dept. of Plant and Soil Science, Texas Tech University, Lubbock, TX 79409
Gerald M. Henry*
Affiliation:
Dept. of Crop and Soil Sciences, University of Georgia, Athens, GA 30602
Cynthia B. McKenney
Affiliation:
Dept. of Plant and Soil Science, Texas Tech University, Lubbock, TX 79409
*
Corresponding author's E-mail: gmhenry@uga.edu

Abstract

Greenhouse trials were conducted to determine Hooker's evening primrose transplant tolerance to POST-applied herbicides. Herbicide treatments consisted of glyphosate at 1.68 kg ae ha−1, glufosinate at 0.84 kg ai ha−1, fenoxaprop at 0.10 kg ai ha−1, fluazifop at 0.45 kg ai ha−1 + a nonionic surfactant (NIS) at 0.25% v/v, sulfosulfuron at 0.06 kg ai ha−1 + NIS at 0.25% v/v, quinclorac at 0.42 kg ae ha−1 + methylated seed oil (MSO) at 0.5% v/v, mesotrione at 0.21 kg ai ha−1, and the combination of quinclorac + mecoprop + dicamba at 0.42 + 0.21 + 0.06 kg ae ha−1 + MSO at 0.5% v/v. Fluazifop (14%) and fenoxaprop (19%) treatments did not result in any significant phytotoxicity 7 d after treatment (DAT) compared with the nontreated check. Hooker's evening primrose exhibited 26 to 37% phytotoxicity in response to quinclorac, glyphosate, or sulfosulfuron 7 DAT. Phytotoxicity ≥ 50% was observed for mesotrione, glufosinate, and the combination of quinclorac + mecoprop + dicamba 7 DAT. Phytotoxicity increased for all treatments 28 DAT. Fluazifop (21%) was the only treatment that did not exhibit phytotoxicity symptoms different from the nontreated check 28 DAT. Hooker's evening primrose exhibited 31 to 40% phytotoxicity with applications of fenoxaprop, glyphosate, or glufosinate 28 DAT. Phytotoxicity was ≥ 58% with all other treatments 28 DAT. Fluazifop exhibited similar above-ground (12.4 g) and below-ground (16.4 g) biomass as the nontreated check (10.8 and 14.7 g, respectively) 28 DAT. All other treatments resulted in 1.6 to 5 g of above-ground biomass and 0.8 to 4.3 g of below-ground biomass 28 DAT. Fluazifop (24.3) and fenoxaprop (18.8) applications resulted in a plant growth index (PGI) that was not significantly different from the nontreated check (24.7) 28 DAT. A PGI ≤ 16.2 was observed for all other treatments 28 DAT.

Experimentos de invernadero fueron realizados para determinar la tolerancia de trasplantes de Oenothera elata a herbicidas aplicados POST. Los tratamientos de herbicidas fueron glyphosate a 1.68 kg ae ha−1, glufosinate a 0.84 kg ai ha−1, fenoxaprop a 0.10 kg ai ha−1, fluazifop a 0.45 kg ai ha−1 + surfactante no-iónico (NIS) a 0.25% v/v, sulfosulfuron a 0.06 kg ai ha−1 + NIS a 0.25% v/v, quinclorac a 0.42 kg ae ha−1 + aceite de semilla metilado (MSO) a 0.5% v/v, mesotrione a 0.21 kg ai ha−1, y la combinación de quinclorac + mecoprop + dicamba a 0.42 + 0.21 + 0.06 kg ae ha−1 + MSO a 0.5% v/v. Los tratamientos de fluazifop (14%) y fenoxaprop (19%) no resultaron en fitotoxicidad significativa 7 d después del tratamiento (DAT) en comparación con los testigos no tratados. O. elata mostró 26 a 37% de fitotoxicidad en respuesta a quinclorac, glyphosate, o sulfosulfuron 7 DAT. Fitotoxicidad ≥50% se observó con mesotrione, glufosinate, y la combinación de quinclorac + mecoprop + dicamba 7 DAT. La fitotoxicidad incrementó para todos los tratamientos 28 DAT. Fluazifop (21%) fue el único tratamiento que no mostró síntomas de fitotoxicidad diferentes al testigo no tratado 28 DAT. O. elata mostró 31 a 40% de fitotoxicidad con aplicaciones de fenoxaprop, glyphosate, o glufosinate 28 DAT. La fitotoxicidad fue ≥58% con todos los demás tratamientos 28 DAT. Fluazifop mostró biomasa aérea (12.4 g) y subterránea (16.4 g) similares al testigo no tratado (10.8 y 14.6 g, respectivamente) 28 DAT. Todos los demás tratamientos resultaron en 1.6 a 5 g de biomasa aérea y 0.8 a 4.3 g de biomasa subterránea 28 DAT. Las aplicaciones de fluazifop (24.3) y fenoxaprop (18.8) resultaron en un índice de crecimiento vegetal (PGI) que no fue significativamente diferente al testigo no tratado (24.7) 28 DAT. Un PGI ≤16.2 se observó en todos los demás tratamientos 28 DAT.

Type
Notes
Copyright
Copyright © Weed Science Society of America 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Literature Cited

Armel, G. R., Wilson, H. P., Richardson, R. J., and Hines, T. E. 2003. Mesotrione combinations in no-till corn (Zea mays). Weed Technol. 17:111116.CrossRefGoogle Scholar
Arnold, M. 2008. Landscape Plants for Texas and Environs. 3rd ed. Stipes Publishing. 92 p.Google Scholar
Balch, S. A., McKenney, C. B., and Auld, D. L. 2003. Evaluation of gamma-linolenic acid composition of evening primrose (Oenothera) species native to Texas. HortScience. 38:595598.CrossRefGoogle Scholar
Barre, D. E. 2001. Potential of evening primrose, borage, black currant, and fungal oils in human health. Ann. Nutr. Metab. 45:4757.Google Scholar
Behandary, R. M., Whitwell, T., and Briggs, J. 1997. Growth of containerized landscape plants is influenced by herbicide residues in irrigation water. Weed Technol. 11:793797.CrossRefGoogle Scholar
Carter, J. P. 1988. Gamma-linolenic acid as a nutrient. Food Technol. 42:7282.Google Scholar
Coffman, C. B. and Gentner, W. A. 1980. Persistence of several controlled release formulations of trifluralin in greenhouse and field. Weed Sci. 28:2123.CrossRefGoogle Scholar
Correll, D. S. and Johnston, M. C. 1970. Manual of the vascular plants of Texas. Renner, TX Texas Res. Foundation. 1131 p.Google Scholar
Culpepper, A. S., Carlson, D. S., and York, A. C. 2005. Weed science: preplant control of cutleaf evening primrose (Oenothera laciniata Hill) and wild radish (Raphanus raphanistrum L.) in conservation tillage cotton (Gossypium hirsutum L.). J. Cotton Sci. 9:223228.Google Scholar
Deng, Y. C., Lapinskas, P., Li, J., and Hua, H. M. 2001. Studies on the cultivation and uses of evening primrose (Oenothera spp.) in China. Econ. Bot. 55:8392.CrossRefGoogle Scholar
Dietrich, W., Raven, P. H., and Wagner, W. L. 1997. Systematics of Oenothera section Oenothera subsection Oenothera (Onagraceae). Systematic Botany Monographs, Vol. 50. 234 p.Google Scholar
Gilreath, J. P. and Santos, B. 2005. Weed management with oxyfluoren and napropamide in mulched strawberry. Weed Technol. 19:325328.Google Scholar
Hall, I. V., Sreiner, E., Threadgill, P., and Jones, R. W. 1988. The biology of Canadian weeds. 84. Oenothera biennis L. Can. J. Plant Sci. 68:163173.CrossRefGoogle Scholar
Harte, C. 1994. Oenothera: Contributions of a plant to biology. Berlin, Germany: Springer-Verlag. Pages 1–261p.Google Scholar
Lingenfelter, D. D. and Curran, W. S. 2007. Effect of glyphosate and several ACCase- inhibitor herbicides on wirestem muhly (Muhlenbergia frondosa) control. Weed Technol. 21:732738.CrossRefGoogle Scholar
Miller, A. J., Bellinder, R. R., Xu, B., Rauch, B. J., Goffinet, M. C., and Welser, M.J.C. 2003. Cabbage (Brassica oleracea) response to pendimethalin applied posttransplant. Weed Technol. 17:256260.Google Scholar
Owen, M. 2008. Review: weed species shifts in glyphosate-resistant crops. Pest Manag. Sci. 64:377387.Google Scholar
Peschel, W., Plescher, A., Sonnenschein, M., and Dieckmann, W. 2007. High antioxidant potential of pressing residues from evening primrose in comparison to other oilseed cakes and plant antioxidants. Ind. Crops Prod. 25:4454.CrossRefGoogle Scholar
Reynolds, D., Crawford, S., and Jordan, D. 2000. Cutleaf evening primrose control with preplant burndown herbicide combinations in cotton. J. Cotton Sci. 4:124129.Google Scholar
Robinson, A. and Johnson, W. G. 2012. Response of soybean yield components to. 2,4D. Weed Sci 61: 68–76.Google Scholar
Simpson, M.J.A. and Fieldsend, A. F. 1993. Evening primrose: harvest methods and timing. Acta Hort. 331:121128.CrossRefGoogle Scholar
Shankle, M. W., Bloodworth, K. M., and Reynolds, D. B. 2001. Comparison of new preplant burndown options for cotton production. Proc. South. Weed Sci. Soc. 54:32.Google Scholar
Smith, M. W., Wolf, M. E., Cheary, B. S., and Carroll, B. L. 2001. Allelopathy of bermudagrass, tall fescue, redroot pigweed, and cutleaf evening primrose on pecan. HortScience. 36:10471048.Google Scholar
Stringer, D., Richardson, W. G., and Parker, C. 1985. Tolerance of Oenothera biennis to various herbicide treatments. Tests Agrochemicals Cultivars. 6:124125.Google Scholar
Taylor-Lovell, S., Wax, L. M., and Nelson, R. 2001. Phytotoxic response and yield of soybean (Glycine max) varieties treated with sulfentrazone or flumioxazin. Weed Technol. 15:95102.Google Scholar