Hostname: page-component-76fb5796d-vvkck Total loading time: 0 Render date: 2024-04-25T14:45:59.631Z Has data issue: false hasContentIssue false

Investigation of Dipolar Relaxation Processes in a Side-Chain Nonlinear Optical Polymer

Published online by Cambridge University Press:  10 February 2011

Z. -Y. Cheng
Affiliation:
Department of Physics, University of Puerto Rico, P. O. Box 23343, San Juan, PR 00931–3343, USA. cheng@upracd.upr.clu.edu; rkatiyar@upracd.upr.clu.edu
R. S. Katiyar
Affiliation:
Department of Physics, University of Puerto Rico, P. O. Box 23343, San Juan, PR 00931–3343, USA. cheng@upracd.upr.clu.edu; rkatiyar@upracd.upr.clu.edu
S. Bauer
Affiliation:
Institut für Festkörperphysik, Universität Potsdam, Am Neuen Palais 10, D-14469 Potsdam, Germany, sbauer@rz.uni-potsdam.de
S. Bauer-Gogonea
Affiliation:
Heinrich-Hertz-Institut für Nachrichtentechnik Berlin, Einsteinufer 37, D-10587 Berlin, Germany, sbauer@hhi.de
Get access

Abstract

Amorphous thin films of a typical side-chain nonlinear optical polymer were investigated by means of dielectric spectroscopy and thermally stimulated depolarization current (TSDC) within the temperature range -40°C to 230°C. Three distinct relaxation processes, labelled α, β and γ were observed. The α-relaxation, associated with the glass transition, is well described by the Vogel-Fulcher relation, while the sub glass transition β and γ-relaxation follow Arrhenius relations. The advantage of TSDC over dielectric spectroscopy is demonstrated for the investigation of the weak β-relaxation in the side-chain polymer. Furthermore, the β -relaxation is responsible for the initial, fast decay of the electro-optical response of the side-chain polymer at room temperature.

Type
Research Article
Copyright
Copyright © Materials Research Society 1997

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1 Polymers for Lightwave and Integrated Optics: Technology and Applications, edited by Hornak, L. A. (Marcel-Dekker, New York, 1992).Google Scholar
2 Nonlinear Optical and Electroactive Polymers, edited by Prasad, P. N. and Ulrich, D. R. (Plenum, New York, 1988)Google Scholar
3 Singer, K. D., Sohn, J. E., and Lalama, S. J., Appl. Phys. Lett. 49, 248 (1986).Google Scholar
4 Teraoka, J., Jungbauer, D., Reck, B., Yoon, D. Y., Twieg, R., and Willson, C. G., J. Appl. Phys., 69, 2568 (1991).Google Scholar
5 Eich, M., Sen, A., Looser, H., Bjorklund, G. C., Swalen, J. D., Twieg, R., and Yoon, D. Y., J. Appl. Phys., 66, 2559 (1989).Google Scholar
6 Eich, M., Reck, B., Yoon, D. Y., Willson, C. G., and Bjorklund, G. C., J. Appl. Phys., 66, 3241 (1989).Google Scholar
7 Bauer-Gogonea, S., Bauer, S., Wirges, W., and Gerhard-Multhaupt, R., J. Appl. Phys., 76, 2627 (1994).Google Scholar
8 Lindsay, G. A., Henry, R. A., Hoover, J. M., Knoesen, A., and Mortazavi, M. A., Macromolecules, 25, 4888 (1992).Google Scholar
9 Jungbauer, D., Teraoka, I., Yoon, D. Y., Reck, B., Swalen, J. D., Twieg, R., and Wilson, C. G., J. Appl. Phys., 69, 8011 (1991).Google Scholar
10 Mopsik, F. I. and Broadhurst, M.G., J. Appl. Phys., 46, 4204 (1975). U.M. Ahlheim and F. Lehr, Macromol. Chem. Phys., 195, 361 (1994).Google Scholar
12 Jonscher, A. K., Dielectric Relaxation in Solids (Chelsa Dielectric Press, London, 1983).Google Scholar
13 Cheng, Z. -Y., Yilmaz, S., Wirges, W., Bauer, S., and Bauer-Gogonea, S., to be published.Google Scholar
14 Vanderschueren, J. and Gasiot, J., Chap. 4 in Thermally Stimulated Relaxation in Solid, Topics in Applied Physics Vol. 37, edited by P. Bräunlich (Springer, Berlin, 1979).Google Scholar