Hostname: page-component-8448b6f56d-xtgtn Total loading time: 0 Render date: 2024-04-20T10:53:41.821Z Has data issue: false hasContentIssue false

Magnetic Collapse and the Behavior of Transition Metal Oxides: FeO at High Pressures

Published online by Cambridge University Press:  10 February 2011

R. E. Cohen
Affiliation:
Carnegie Institution of Washington, 5251 Broad Branch Rd., N.W., Washington, DC 20015
Y. Fei
Affiliation:
Carnegie Institution of Washington, 5251 Broad Branch Rd., N.W., Washington, DC 20015
R. Downs
Affiliation:
University of Arizona, Tucson Arizona 85721
I. I. Mazin
Affiliation:
George Mason University, Fairfax, VA and Naval Research Laboratory, Washington, D.C.
D. G. Isaak
Affiliation:
Institute of Geophysics and Planetary Physics, University of California, Los Angeles, Los Angeles, CA, and Azusa Pacific University, Azusa, CA
Get access

Abstract

Linearized augmented plane wave (LAPW) results are presented for FeO at high pressures using the Generalized Gradient Approximation (GGA) to study the high-spin low-spin transition previously predicted by LAPW with the Local Density Approximation (LDA) and Linear Muffin Tin Orbital (LMTO-ASA) methods within the GGA. We find a first-order transition at a pressure of about 105 GPa for the cubic lattice, consistent with earlier LAPW results, but much lower than obtained with the LMTO. The results are generally consistent with recent Mössbauer experiments that show a transition at about 100 GPa. We also discuss the origin of the transition, and show that it is not due to electrostatic crystal-field effects, but is rather due to hybridization and band widening with pressure. Examination of experimental data and computations suggest that the high pressure hexagonal phase of FeO is likely a polytype between the B8 NiAs and anti-B8 AsNi structures. The former is predicted to be an antiferromagnetic metal, and the latter an antiferromagnetic insulator. Implications for geophysics are discussed.

Type
Research Article
Copyright
Copyright © Materials Research Society 1998

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Mott, N.F., Metal-Insulator Transitions, 286 pp., Taylor & Francis, New York, 1990.Google Scholar
2. Ita, J. and Cohen, R.E., Phys. Rev. Lett., 79, 3198 (1997).Google Scholar
3. Mehl, M.J., Cohen, R.E., and Krakauer, H., J. Geophys. Res., 93; 94; 1989, 8009; 1977 (1988).Google Scholar
4. Isaak, D.G., Cohen, R.E., Mehl, M.J., and Singh, D.J., Phys. Rev. B, 47, 7720 (1993).Google Scholar
5. Cohen, R.E., Mazin, I.I., and Isaak, D.G., Science, 275, 654 (1997).Google Scholar
6. Pasternak, M.P., Taylor, R.D., Jeanloz, R., Li, X., Nguyen, J.H., and McCammon, C., Phys. Rev. Lett., 79, 5046(1997).Google Scholar
7. Wei, S.H. and Krakauer, H., Phys. Rev. Lett., 55, 1200 (1985).Google Scholar
8. Perdew, J.P. and Wang, Y., Phys. Rev. B, 45, 13244 (1992).Google Scholar
9. Andersen, O.K., Phys. Rev. B, 12, 3060 (1975).Google Scholar
10. Perdew, J.P., Burke, K., and Ernzerhof, M., Phys. Rev. Lett., 77, 3865 (1996).Google Scholar
11. Zou, G., Mao, H.-K., Bell, P.M., and Virgo, D., Carnegie Institution of Washington Year Book, 79, 374 (1980).Google Scholar
12. Burns, R.G., Mineralogical Applications of Crystal Field Theory, 551 pp., Cambridge University Press, Cambridge, 1993.Google Scholar
13. Watanabe, H., Operator Methods in Ligand Field Theory, 193 pp., Prentice-Hall, Englewood Cliffs, New Jersey, 1966.Google Scholar
14. Bargeron, C.B., Avinor, M., and Drickamer, H.G., Inorganic Chemistry, 10, 1338 (1971).Google Scholar
15. Drickamer, H.G. and Frank, C.W., Electronic Transition and the High Pressure Chemistry and Physics of Solids, 220 pp., Chapman and Hall, London, 1973.Google Scholar
16. Mattheiss, L.F., Phys. Rev. B, 5, 290 (1972).Google Scholar
17. Harrison, W.A., Electronic Structure and the Properties of Solids: The Physics of the Chemical Bond, 582 pp., W. H. Freeman and Company, San Francisco, 1980.Google Scholar
18. Mattheiss, L.F., Phys. Rev. B, 5, 306 (1972).Google Scholar
19. Mattheiss, L.F., Phys. Rev. B, 2, 3918 (1970).Google Scholar
20. Dufek, P., Blaha, P., and Schwarz, K., Phys. Rev. B, 51, 4122 (1995).Google Scholar
21. Scalettar, R.T., Scalapino, D.J., Sugar, R.L., and Toussaint, D., Phys. Rev. B, 39, 4711, 1998.Google Scholar
22. Fei, Y. and Mao, H.-K., Science, 266, 1668 (1994).Google Scholar
23. Mazin, I.I., Fei, Y., Downs, J.W., and Cohen, R.E., Amer. Mineral., in press, 1998.Google Scholar
24. McCammon, C., J. Magn. Magn. Mat., 104–107, 1937 (1992).Google Scholar
25. Knittle, E. and Jeanloz, R., Geophys. Res. Lett., 13, 1541 (1986).Google Scholar
26. Williams, Q. and Garnero, E.J., Science, 273, 1528 (1996).Google Scholar
27. Kendall, J.M. and Silver, P.G., Nature, 381, 409 (1996).Google Scholar
28. Revenaugh, J. and Meyer, R., Science, 277, 670 (1997).Google Scholar
29. Franck, S. and Kowalle, G., Phys. Earth Planet. Inter., 90, 157 (1995).Google Scholar
30. Knittle, E. and Jeanloz, R., Science, 251, 1438 (1991).Google Scholar
31. Knittle, E. and Jeanloz, R., Geophys. Res. Lett., 16, 609 (1989).Google Scholar
32. Goarant, F., Guyot, F., Peyronneau, J., and Poirier, J., J. Geophys. Res., 97, 4477 (1992).Google Scholar
33. Ramamurthy, V., Science, 253, 303 (1991).Google Scholar
34. Walker, D., Norby, L., and Jones, J.H., Science, 262, 1858 (1993).Google Scholar
35. Jeanloz, R. and Lay, T., Scientific American, 268, 26(1993).Google Scholar
36. Jeanloz, R. and Romanowicz, B., Physics Today, August, 22 (1997).Google Scholar
37. Manga, M. and Jeanloz, R., Geophys. Res. Lett., 23, 3091 (1996).Google Scholar