Hostname: page-component-76fb5796d-qxdb6 Total loading time: 0 Render date: 2024-04-25T19:16:49.184Z Has data issue: false hasContentIssue false

New Zinc and Cadmium Chalcogenide Structured Nanoparticles

Published online by Cambridge University Press:  01 February 2011

S. M. Daniels
Affiliation:
Department of Chemistry and The Manchester Materials Science Centre, University of Manchester, UK. E-mail: paul.obrien@man.ac.uk
P. O'Brien
Affiliation:
Department of Chemistry and The Manchester Materials Science Centre, University of Manchester, UK. E-mail: paul.obrien@man.ac.uk
N. L. Pickett
Affiliation:
Department of Chemistry and The Manchester Materials Science Centre, University of Manchester, UK. E-mail: paul.obrien@man.ac.uk
J. M. Smith
Affiliation:
School of Engineering and Physical Sciences, Heriot-Watt University, Edinburgh, UK.
Get access

Abstract

The growth of 2D quantum dot quantum well (QDQW) nanocrystals in which a shell of CdSe is grown onto cores of ZnS and capped with a further shell of ZnS is reported. The red shift in the interband absorption and photoluminescence spectrum of the quantum dots (QDs) indicates relocalization of carriers from confinement in the ZnS core to the CdSe shell. The change in interband absorption energy utilizing the effective mass approximation with spherical symmetry was modeled, enabling an estimate of the CdSe thicknesses grown. 1.8nm and 2.5nm ZnS cores were selected as the base on which to grow the CdSe shells. Despite the 12% lattice mismatch between ZnS and CdSe, our results indicate that we have successfully grown CdSe shells approximately three monolayers thick onto 2.5nm ZnS core. Anything beyond a single monolayer of CdSe could not be grown onto the 1.8nm core, although some success was observed by incorporating a CdS graded layer in-between the ZnS core and CdSe shell. The effect of ZnS shell thickness on photoluminescence efficiency has also been studied with optimum shell thicknesses showing quantum yields as high as 52%. Growth of these nanocrystals represents a significant step in the development of strained nanocrystalline heterostructures.

Type
Research Article
Copyright
Copyright © Materials Research Society 2004

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Murray, C. B., Norris, D. J., Bawendi, M. G., J. Am. Chem. Soc., 115, 8706, (1993)Google Scholar
2. Eychmüller, A., Mews, A. and Weller, H., Chem. Phys. Lett., 208, 59 (1993).Google Scholar
3. Mews, A., Eychmüller, A., Giersig, M., Schooss, D., Weller, H., J. Phys. Chem., 98, 934, (1994)Google Scholar
4. Mews, A., Kadavanich, A. V., Banin, U., Alivisatos, A. P., Phys. Rev. B., 53, R13 242, (1996)Google Scholar
5. Bryant, G. W, Phys. Rev. B., 52, R16 997 (1995).Google Scholar
6. Jaskolski, W. and Bryant, G. W., Phys. Rev. B., 57, R4237 (1998).Google Scholar
7. Xie, R.-H., Bryant, G. W., Lee, S. and Jaskolski, W., Phys. Rev. B., 65, 235306 (2002).Google Scholar
8. Dabbousi, B. O., Rodriguez-Viejo, J., Mikulec, F. V., Heine, J. R., Mattoussi, H., Ober, R., Jensen, K. F. and Bawendi, M. G., J. Phys. Chem. B., 101, 9463 (1997).Google Scholar
9. Hines, M. A. and Guyot-Sionnest, P., J. Phys. Chem., 100, 468 (1996).Google Scholar
10. Qu, L. and Peng, X., J. Am. Chem. Soc. 124, 2049 (2002).Google Scholar
11. Crooker, S.A., Barrick, T., Hollingsworth, J. A. and Klimov., V. I., App. Phys. Lett., 82, 2793 (2003)Google Scholar
12. Shimizu, K. T., Neuhauser, R. G., Leatherdale, C. A., Empedocles, S. A., Woo, W. K. and Bawendi, M.G.., Phys. Rev. B, 63, 205316 (2001)Google Scholar
13. Neuhauser, R. G., Shimizu, K. T., Woo, W. K., Empedocles, S. A. and Bawendi, M. G.., Phys. Rev. Lett., 85, 3301 (2000).Google Scholar
14. Kuno, M., Fromm, D. P., Hamann, H. F., Gallagher, A. and Nesbitt, D. J., J. Chem Phys., 112, 3117 (2000).Google Scholar
15. Dance, Ian G., Choy, Anna and Scudder, Marcia L., J. Am. Chem. Soc., 106, 6285 (1984).Google Scholar