Hostname: page-component-76fb5796d-wq484 Total loading time: 0 Render date: 2024-04-25T13:39:24.394Z Has data issue: false hasContentIssue false

Investigations of (1,3-Dimethyl-3-methylsilamethylene - disilacyclobutane) as a Single Source CVD Precursor to Silicon Carbide

Published online by Cambridge University Press:  25 February 2011

David J. Larkin
Affiliation:
Departments of Chemistry and Rensselaer Polytechnic Institute, Troy, New York 12180
Leonard V. Interrante
Affiliation:
Departments of Chemistry and Rensselaer Polytechnic Institute, Troy, New York 12180
John B. Hudson
Affiliation:
Materials Engineering, Rensselaer Polytechnic Institute, Troy, New York 12180
Bin Han
Affiliation:
Materials Engineering, Rensselaer Polytechnic Institute, Troy, New York 12180
Get access

Abstract

The low pressure chemical vapor deposition (LPCVD) of silicon carbide from (CH3)HSiCH2SiCH2 (CH3)CH2 SiH2 (CH 3) on Si(100) has been investigated between 700 and 1100°C at ca. 1.0 torr total pressure using a flow of argon as a carrier gas in a cold-wall LPCVD system. The gaseous byproducts were determined using quadrupole mass spectrometry (QMS) and gas chromatography - Fourier transform IR (FTIR) spectroscopy. The coating surface morphology varied from smooth to a columnar structure with increasing substrate temperature. Film composition and crystallinity were monitored as a function of deposition temperature using Auger electron spectroscopy (AES) and powder XRD.

Type
Research Article
Copyright
Copyright © Materials Research Society 1991

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Schlichting, J., Powder Met. Int., 12, 141(1980); J. A. Powell, D. J. Larkin, L. G. Matus, W. J. Choyke, J. L. Bradshaw, L. Henderson, M. Yoganathan, J Yang, P. Pirouz, Appl. Phys. Lett., 56(14), 1353(1990); L. M. Ivanova, G. A. Kazaryan, A. A. Pletyushkin, Izv. Akad.Neorg. Mater., 2(2), 223(1966).; Duncan M. Brown, J. D. Parsons, U.S. Patent No. 4 923 716 (8 May 1990);Google Scholar
2. Auner, N., Davidson, I. M. T., Ijadi-Maghsoudi, S., Lawrence, F. T., Organometallics, 5, 431(1986); V. G. Genchel', N. V. Demidova, N. S. Nametkin, L. E. Gusel'nikov, E. A. Volnina, E. N. Burdasov, V. M. Vdovin, Izv. Akad. Ser. Khim., 10, 2337(1976).Google Scholar
3. O'Neal, H. E., Ring, M. A., J. Organometal. Chem., 213, 419(1981).Google Scholar
4. Lee, W., Interrante, L. V., Czekaj, C., Hudson, J. B., Lenz, K., Sun, B., Mat. Res. Soc. Proc., 131, 431(1989).Google Scholar
5. Kriner, W. A., J. Org. Chem., 29, 1601(1961).Google Scholar
6. Larkin, D. J., Interrante, L. V., Paper in prepar.Google Scholar
7. Thornton, J. A., J. Vac. Sci. Technol., 11, 666(1974).Google Scholar
8. JCPDS Powder Diffraction Files, Card No.-1-1119.Google Scholar
9. Smith, A. L., Spectrochim. Acta, 16, 87(1960).Google Scholar
10. Kulkarn, S. B., in VLSI Electronics :Microstructure Science, ed. by Einspruch, N. C. and Larrabee, G. B. (Academic Press. Inc., 1983), Vol. 6, p. 73. rdGoogle Scholar
11. CRC Handbook of Chemistry and Physics, 63 aed., editied by Weast, R. C. and Astle, M. J. (Chemical Rubber Publishing Co., 1984), p.B143 Google Scholar
12. Davidson, I. M. T., Fenton, A., Ijadi-Maghsoodi, S., Scampton, R. J., Auner, N., Grobe, J., Tillman, N., Barton, T. J., Organometallics, 3, 1593(1984).Google Scholar
13. Schaefer, H. F. III, Acc. Chem. Res., 15, 283(1982); R. T. Conlin, D. L. Wood, J. Am. Chem. Soc. Commun., 103, 1843(1981).Google Scholar