Hostname: page-component-8448b6f56d-m8qmq Total loading time: 0 Render date: 2024-04-18T19:20:24.925Z Has data issue: false hasContentIssue false

Focused Ion Beam Induced Microstructural Alterations: Texture Development, Grain Growth, and Intermetallic Formation

Published online by Cambridge University Press:  06 April 2011

Joseph R. Michael*
Affiliation:
Sandia National Laboratories, Materials Characterization Department, P.O. Box 5800 MS 0886, Albuquerque, NM 87185-0886, USA
*
Corresponding author. E-mail: jrmicha@sandia.gov
Get access

Abstract

Copper, gold, and tungsten thin films have been exposed to 30 kV Ga+ ion irradiation, and the resulting microstructural modifications are studied as a function of ion dose. The observed microstructural changes include texture development with respect to the easy channeling direction in the target, and in the case of Cu, an additional intermetallic phase is produced. Texture development in these target materials is a function of the starting materials grain size, and these changes are not observed in large grained materials. The accepted models of differential damage driven grain growth are not supported by the results of this study. The implications of this study to the use of focused ion beam tools for sample preparation are discussed.

Type
Materials Applications
Copyright
Copyright © Microscopy Society of America 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Adams, D.P., Vasile, M.J. & Mayer, T.M. (2006). Focused ion beam sculpting curved shape cavities in crystalline and amorphous targets. J Vac Sci Technol B 24, 17661775.CrossRefGoogle Scholar
ASM (2007). Alloy Phase Diagrams Center, Villars, P., editor-in-chief; Okamoto, H. and Cenzual, K., section editors; http://www.asminternational.org/AsmEnterprise/APD, ASM International, Materials Park, OH, USA, 2007.Google Scholar
Atwater, H.A., Thompson, C.V. & Smith, H.I. (1988a). Ion bombardment-enhanced grain growth in germanium, silicon and gold thin films. J Appl Phys 64, 23372353.CrossRefGoogle Scholar
Atwater, H.A., Thompson, C.V. & Smith, H.I. (1988b). Interface-limited grain-boundary motion during ion bombardment. Phys Rev Lett 60, 112115.CrossRefGoogle ScholarPubMed
Beck, M.J., Schrimpf, R.D., Fleetwood, D.M. & Pantelides, S.T. (2008). Disorder-recrystallization effects in low-energy beam-solid interactions. Phys Rev Lett 100, 185502(4).CrossRefGoogle ScholarPubMed
Bradley, R.M., Harper, J.M.E. & Smith, D.A. (1986). Theory of thin-film orientation by ion bombardment during deposition. J Appl Phys 60, 41604164.CrossRefGoogle Scholar
Carter, C.B. & Williams, D.B. (1996). Quantitative X-ray microanalysis. In Transmission Electron Microscopy: A Textbook for Materials Science, pp. 597619. New York: Plenum Press.Google Scholar
Carter, G. (2000). Influence of thermal spikes on preferred grain orientation in ion-assisted deposition. Phys Rev B 62, 83768390.CrossRefGoogle Scholar
Casey, J.D., Phaneuf, M.W., Chandler, C., Megorden, M., Noll, K.E., Schuman, R.J., Krechmer, A., Monforte, D., Antonniou, N., Bassom, N., Li, J., Carleson, P. & Huynh, C.J. (2002). Copper device editing: Strategy for focused ion beam milling of copper. Vac Sci Technol B 20, 26822685.CrossRefGoogle Scholar
Cuenat, A., Hessler-Wyser, A., Dobeli, M. & Gotthardt, R. (2001). Spontaneous crystalline multilayer formation in Ni implanted with Al at 100K. Mat Res Soc Proc 647, 7.2.17.2.6.Google Scholar
Dietiker, M., Oliges, S., Schinhammer, M., Seita, M. & Spolenak, R. (2009). Texture evolution and mechanical properties of ion-irradiated Au thin films. Acta Mat 57, 40094021.CrossRefGoogle Scholar
Dobrev, D. (1982). Ion-beam induced texture formation in vacuum condensed thin metal films. Thin-Solid Films 92, 4153.CrossRefGoogle Scholar
Dong, L. & Srolovitz, D.J. (1999). Mechanism of texture development in ion-beam assisted deposition. Appl Phys Lett 75, 584586.CrossRefGoogle Scholar
Giannuzzi, L.A., Howell, P.R., Pickering, H.W. & Bitler, W.R. (1990). Diffusion induced recrystallization during ion beam milling. Scripta Met et 24, 24072412.CrossRefGoogle Scholar
Giannuzzi, L.A. & Stevie, F.A. (2005). Introduction to Focused Ion Beams: Instrumentation, Theory, Techniques and Practice. New York: Springer.CrossRefGoogle Scholar
Kaoumi, D., Motta, A.T. & Birtcher, R.C. (2008). Thermal spike model of grain growth under irradiation. J Appl Phys 104, 073525(13).CrossRefGoogle Scholar
Kempshaw, B.W., Schwarz, S.M., Prenitzer, B.I. & Giannuzzi, L.A. (2001). Ion channeling effects on the focused ion beam milling of Cu. J Vac Sci Technol B 19, 749754.CrossRefGoogle Scholar
Kozlov, E.V., Ryabchikov, A.I., Sharkeev, Y.P, Stepanov, I.B., Fortuna, S.V., Sivin, D.O., Kurzina, I.A., Prokopova, T.S. & Melnik, I.A. (2002). Formation of intermetallic-layers at high intensity ion implantation. Surf Coat Technol 158159, 343348.CrossRefGoogle Scholar
Levi-Setti, R. (1983). Ion channeling effets in scanning ion microscopy with 60 keV Ga+ probe. Nucl Instrum Methods Phys Res 205, 299309.CrossRefGoogle Scholar
Makarov, V.V., Thompson, W.B. & Lundquist, T.R. (2003) Reduced time for uniform etching of Cu power planes during FIB editing. Mat Res Soc Symp Proc 766, E3.10.2E3.10.6.CrossRefGoogle Scholar
Marinov, M. & Dobrev, D. (1977). The change in the structure of vacuum-condensed hexagonal close-packed metal films on ion bombardment. Thin Solid Films 42, 265268.CrossRefGoogle Scholar
Mulders, J.J.L., de Winter, D.A.M. & Duinkerken, W.J.H.C.P. (2007). Measurement and calculations of FIB milling yield of bulk metals. Microelec Eng 84, 15401543.CrossRefGoogle Scholar
Nastasi, M., Mayer, J.W. & Hirvonen, J.K. (1996). Ion-Solid Interactions: Fundementals and Applications. New York: Cambridge University Press.CrossRefGoogle Scholar
Orloff, J. & Utlaut, M. (2003). High Resolution Focused Ion Beams: FIB and Its Applications. New York: Kluwer Academic/Plenum Publishers.CrossRefGoogle Scholar
Park, C.-M. & Bain, J.A. (2002). Focused ion beam induced grain growth in magnetic materials for recording heads. J Appl Phys 91, 68306832.CrossRefGoogle Scholar
Phaneuf, M.W., Li, J. & Casey, J.D. (2002). Gallium phase formation in Cu and other FCC metals during near normal incidence Ga-FIB milling and techniques to avoid this phenomenon. Microsc Microanal 8, 5253.CrossRefGoogle Scholar
Prasad, S.V., Michael, J.R. & Christenson, T.R. (2003). EBSD studies of wear-induced subsurface regions in LIGA nickel. Scripta Mater 48, 255260.CrossRefGoogle Scholar
Rao, Z., Williams, J.S., Pogany, A.P. & Sood, D.K. (1993). An investigation of phase formation by high dose silicon implantation into nickel. Nucl Instrum Method Phys Res B 8081, 352356.CrossRefGoogle Scholar
Sarkar, J. & Gilman, P.S. (2008). Imaging ultrafine grains in machined tantalum subsurface using a focused ion beam. Scripta Mater 59, 301304.CrossRefGoogle Scholar
Shen, T. (2008). Radiation tolerance in a nanostructure: Is smaller better? Nucl Instrum Methods Phys Res B 266, 921925.CrossRefGoogle Scholar
Shen, T.D., Feng, S., Tang, M., Valdez, J.A., Wang, Y. & Sickafus, K.E. (2007). Enhanced radiation tolerance in nanocrystalline MgGa2O4. Appl Phys Lett 90, 263115.CrossRefGoogle Scholar
Spolenak, R. & Perez Prado, M.T. (2006). Single crystal like thin films by selective ion-induced grain growth. Scripta Mater 55, 103106.CrossRefGoogle Scholar
Spolenak, R., Sauter, L. & Eberl, C. (2005). Reversible orientation-based grain growth in thin metal films induced by a focused ion beam. Scripta Mater 53, 12911296.CrossRefGoogle Scholar
Stahl, B., Kankeleit, E. & Walter, G. (2003). Implantation induced phase formationin stainless steel. Nucl Instrum Methods Phys Res 211, 227238.CrossRefGoogle Scholar
Stevie, F.A., Vartuli, C.B., Giannuzzi, L.A., Brown, S.R., Rossie, B., Hilton, F., Mills, R.H., Antonell, M., Inwin, R.B. & Purcell, B.M. (2001). Application of focused in beam lift-out specimen preparation to TEM, SEM, STEM, AES and SIMS analysis. Surf Interf Anal 31, 345351.CrossRefGoogle Scholar
Stroud, P.T. (1972). Ion bombardment and implantation and their application to thin films. Thin Solid Films 11, 126.CrossRefGoogle Scholar
Teichert, J., Bischoff, L. & Hausmann, S. (1998). Ion beam synthesis of cobalt disilicide using focused ion beam implantation. J Vac Sci Technol B 16, 25742577.CrossRefGoogle Scholar
Van Wyk, G.N. & Smith, H.J. (1980). Crystalline reorientation due to ion bombardment. Nucl Instrum Methods 170, 433439.CrossRefGoogle Scholar
Voegeli, W., Albe, K. & Hahn, H. (2003). Simulation of grain growth in nanocrystalline nickel induced by ion irradiation. Nucl Instrum Methods Phys Res B 202, 230235.CrossRefGoogle Scholar
Was, G.S. (1996). Ion beam modification of metals: Compositional and microstructural changes. Prog Surf Sci 32, 211332.CrossRefGoogle Scholar
Yu, L.S, Harper, J.M.E., Cuomo, J.J. & Smith, D.A. (1986). Control of thin film orientation by glancing angle ion bombardment during growth. J Vac Sci Technol A 4, 443447.CrossRefGoogle Scholar
Ziegler, J.F. (2008). SRIM 2008. Available at www.srim.org.Google Scholar