Hostname: page-component-6b989bf9dc-lb7rp Total loading time: 0 Render date: 2024-04-14T16:46:10.597Z Has data issue: false hasContentIssue false

Pit nucleation in compound semiconductor thin films

Published online by Cambridge University Press:  01 February 2011

Mathieu Bouville
Affiliation:
Department of Materials Science and Engineering, University of Michigan, Ann Arbor, MI 48109–2136
Michael L. Falk
Affiliation:
Department of Materials Science and Engineering, University of Michigan, Ann Arbor, MI 48109–2136
Joanna Mirecki Millunchick
Affiliation:
Department of Materials Science and Engineering, University of Michigan, Ann Arbor, MI 48109–2136
Get access

Abstract

Pit nucleation has been observed in a variety of semiconductor thin films. We present a model in which pit nucleation is considered to arise from a near-equilibrium nucleation process in which the adatom concentration plays an important role. Although pits relieve elastic energy more efficiently than islands, pit nucleation is prevented if the adatom concentration is too high. Inhomogeneities in the adatom density on the surface due to three-dimensional islands enhance pit nucleation. Thermodynamic considerations predict several different growth regimes in which pits may nucleate at different stages of growth depending on the materials system and growth conditions. However kinetics must be taken into account to make direct comparisons to experimental observations. These comparisons show good agreement given the uncertainties in quantifying experimental parameters such as the surface energy.

Type
Research Article
Copyright
Copyright © Materials Research Society 2004

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Riposan, A., Martin, G. K. M., Bouville, M., Falk, M. L. and Millunchick, J. M., Mat. Res. Soc. Proc. 696 (2002)Google Scholar
2. Riposan, A., Martin, G. K. M., Bouville, M., Falk, M. L. and Millunchick, J. M., Surf. Sci. 525, 222 (2003)Google Scholar
3. Chokshi, N. and Millunchick, J. M., Appl. Phys. Lett. 76, 2382 (2000)Google Scholar
4. Chokshi, N., Bouville, M. and Millunchick, J. M., J. Cryst. Growth 236, 563 (2002)Google Scholar
5. Jesson, D.E. et al., Phys. Rev. Lett. 77, 1330 (1996)Google Scholar
6. Jesson, D.E., Kästner, M. and Voigtländer, B., Phys. Rev. Lett. 84, 330 (2000)Google Scholar
7. Gray, J. L., Hull, R. and Floro, J. A., Appl. Phys. Lett. 81, 2445 (2002)Google Scholar
8. Lacombe, D. et al., J. Cryst. Growth 201/202, 252 (1999);Google Scholar
Lacombe, D., Ph.D. thesis, CEMES (1999)Google Scholar
9. Seshadri, A. A., and Millunchick, J. M., Mat. Res. Soc. Proc. 618, 103 (2000)Google Scholar
10. Johnson, M. D., Leung, K. T., Birch, A. and Orr, B. G., J. Cryst. Growth 174, 572 (1997)Google Scholar
11. Theis, W. and Tromp, R. M., Phys. Rev. Lett. 76, 2770 (1996)Google Scholar
12. Vanderbilt, D. and Wickham, L. K., Mat. Res. Soc. Proc. 202, 555 (1991)Google Scholar
13. Walton, D., J. Chem. Phys. 37, 2182 (1962)Google Scholar
14. Bouville, M., Ph.D. thesis, University of Michigan, in preparation.Google Scholar
15. Pelke, E., Moll, N., Kley, A. and Scheffler, M., Appl. Phys. A 65, 525 (1997)Google Scholar
16. Moll, N., Kley, A., Pelke, E. and Scheffler, M., Phys. Rev. B 54, 8844 (1996)Google Scholar
17. Benabbas, T., Androussi, Y. and Lefebvre, A., J. Appl. Phys. 86, 1945 (1999)Google Scholar
18. Meixner, M. et al., Phys. Rev. B 64, 245307 (2001)Google Scholar
19. Bouville, M., Falk, M. L. and Millunchick, J. M., in preparation.Google Scholar