Hostname: page-component-8448b6f56d-xtgtn Total loading time: 0 Render date: 2024-04-18T03:55:56.241Z Has data issue: false hasContentIssue false

Measurements of Polarization Switching in LiNbO3-type ZnSnO3/ZnO Nanocomposite Thin Films

Published online by Cambridge University Press:  16 March 2015

Devajyoti Mukherjee
Affiliation:
Center for Integrated Functional Materials & Department of Physics, University of South Florida, Tampa, Florida 33620, USA Florida Cluster for Advanced Smart Sensor Technologies & Department of Physics, University of South Florida, Tampa, Florida 33620, USA
Mahesh Hordagoda
Affiliation:
Center for Integrated Functional Materials & Department of Physics, University of South Florida, Tampa, Florida 33620, USA
Corisa Kons
Affiliation:
Florida Cluster for Advanced Smart Sensor Technologies & Department of Physics, University of South Florida, Tampa, Florida 33620, USA
Anuja Datta
Affiliation:
Florida Cluster for Advanced Smart Sensor Technologies & Department of Physics, University of South Florida, Tampa, Florida 33620, USA
Sarath Witanachchi
Affiliation:
Center for Integrated Functional Materials & Department of Physics, University of South Florida, Tampa, Florida 33620, USA Florida Cluster for Advanced Smart Sensor Technologies & Department of Physics, University of South Florida, Tampa, Florida 33620, USA
Pritish Mukherjee
Affiliation:
Center for Integrated Functional Materials & Department of Physics, University of South Florida, Tampa, Florida 33620, USA Florida Cluster for Advanced Smart Sensor Technologies & Department of Physics, University of South Florida, Tampa, Florida 33620, USA
Get access

Abstract

We report the measurements of ferroelectricity in LiNbO3 (LN)-type ZnSnO3 /ZnO nanocomposite thick films deposited on Pt-Si substrates using a novel combined chemical/physical technique. Phase-pure LN-type ZnSnO3 nanorods (NRs) were first synthesized using a low temperature solvothermal process and characterized in detail using X-ray diffraction, electron microscopy and Raman spectroscopy. The prototype device for polarization measurements was fabricated by depositing the as-prepared LN-type ZnSnO3 NRs onto conducting Pt-Si substrates (also served as bottom electrodes). A dielectric filler-layer of polycrystalline ZnO was deposited on top using pulsed laser deposition to fabricate LN-type ZnSnO3 /ZnO nanocomposite films. Polarization measurements of the Pt/ZnSnO3+ZnO/Pt nanocomposite capacitors at 300K showed indication of polarization switching in the hysteresis loops with a remanent polarization (Pr) of 13 μC/cm2 at a low applied voltage of 8 V. The work provides information on the coherent design of future FE memory devices based on the emerging non-toxic Pb-free material LN-ZnSnO3.

Type
Articles
Copyright
Copyright © Materials Research Society 2015 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Xu, S., Hansen, B. J., and Wang, Z. L., Nat Commun. 1, 93 (2010).CrossRefGoogle Scholar
Izyumskaya, N., Alivov, Y. -I., Cho, S. -J., Morkoç, H., Lee, H., and Kang, Y. -S., Critical Rev. Solid State Mater. Sci. 32, 111 (2007).CrossRefGoogle Scholar
Benedek, N. A., Fennie, C. J., J. Phys. Chem. C 117, 13339 (2013).CrossRefGoogle Scholar
Inaguma, Y., Aimi, A., Shirako, Y., Sakurai, D., Mori, D., Kojitani, H., Akaogi, M., and Nakayama, M., J. Am. Chem. Soc. 136, 2748 (2014).CrossRefGoogle Scholar
Uchinoin, K., ‘‘ch. 10: Present status of piezoelectric/electrostrictive actuators and remaining problems’’; Piezoelectric Actuators and Ultrasonic Motors, ed. H. L. Tuller. (Kluwer Academic Publishers, Boston, 1997).Google Scholar
Datta, A., Mukherjee, D., Witanachchi, S., and Mukherjee, P., Adv. Funct. Mater. 24, 2638 (2014).CrossRefGoogle Scholar
Datta, A., Mukherjee, D., Kons, C., Witanachchi, S., and Mukherjee, P., Small 10, 4093 (2014).Google Scholar
Inaguma, Y., Yoshida, M., and Katsumata, T., J. Am. Chem. Soc. 130, 6704 (2008).CrossRefGoogle Scholar
Gou, H., Gao, F., and Zhang, J., Comp. Mater. Sci. 49, 552 (2010).CrossRefGoogle Scholar
Zhang, J., Yao, K. L., Liu, Z. L., Gao, G. Y., Sun, Z. Y., and Fan, S. W., Phys. Chem. Chem. Phys. 12, 9197 (2010).CrossRefGoogle Scholar
Halasyamani, P. S., and Poeppelmeier, K. R., Chem. Mater. 10, 2753 (1998).CrossRefGoogle Scholar
Navrotsky, A., Chem. Mater. 10, 2787 (1998).CrossRefGoogle Scholar
Son, J. Y., Lee, G., Jo, M.-H., Kim, H., Jang, H. M., and Shin, Y.-H., J. Am. Chem. Soc. 131, 8386 (2009).CrossRefGoogle Scholar
Wu, J. M., Xu, C., Zhang, Y., and Wang, Z. L., ACS Nano 6, 4335 (2012).CrossRefGoogle Scholar
Wu, J. M., Chen, C.-Y., Zhang, Y., Chen, K.-H., Yang, Y., Hu, Y. Jr., He, H., and Wang, Z. L., ACS Nano 6, 4369 (2012).CrossRefGoogle Scholar
Wu, J. M., Xu, C., Zhang, Y., Yang, Y., Zhou, Y., and Wang, Z. L., Adv Mater. 27, 6094 (2012).CrossRefGoogle Scholar
Lee, K. Y., Kim, D., Lee, J. H., Kim, T. Y., Gupta, M. K., and Kim, S. W., Adv. Funct. Mater. 24, 37 (2014).CrossRefGoogle Scholar
Mukherjee, D., Datta, A., Kons, C., Hordagoda, M., Witanachchi, S., and Mukherjee, P., Appl. Phys. Lett. 105, 212903 (2014).CrossRefGoogle Scholar
Mukherjee, D., Dhakal, T., Srikanth, H., Mukherjee, P. and Witanachchi, S., Phys. Rev. B 81, 205202 (2010).CrossRefGoogle Scholar
Mukherjee, D., Mukherjee, P., Srikanth, H., and Witanachchi, S., J. Appl. Phys. 111, 07C318 (2012).CrossRefGoogle Scholar