Skip to main content Accessibility help
×
Hostname: page-component-8448b6f56d-cfpbc Total loading time: 0 Render date: 2024-04-19T21:06:43.255Z Has data issue: false hasContentIssue false

8 - Interactions among Climate Change, Air Pollutants, and Aeroallergens

Published online by Cambridge University Press:  05 August 2016

Paul J. Beggs
Affiliation:
Macquarie University, Sydney
Get access

Summary

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2016

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Air Quality Expert Group (2007). Air Quality and Climate Change: a UK Perspective. London: Department for the Environment, Food and Rural Affairs.Google Scholar
Albertine, J. M., Manning, W. J., DaCosta, M., et al. (2014). Projected carbon dioxide to increase grass pollen and allergen exposure despite higher ozone levels. PLoS One, 9(11), e111712.CrossRefGoogle ScholarPubMed
Andersen, Z. J., Bønnelykke, K., Hvidberg, M., et al. (2012). Long-term exposure to air pollution and asthma hospitalisations in older adults: a cohort study. Thorax, 67(1), 611.CrossRefGoogle ScholarPubMed
Andersson, C., Engardt, M. (2010). European ozone in a future climate: importance of changes in dry deposition and isoprene emissions. Journal of Geophysical Research: Atmospheres, 115(D02), D02303.CrossRefGoogle Scholar
Balmes, J. R., Fine, J. M., Sheppard, D. (1987). Symptomatic bronchoconstriction after short-term inhalation of sulfur dioxide. American Review of Respiratory Disease, 136(5), 11171121.CrossRefGoogle ScholarPubMed
Bauer, M. A., Utell, M. J., Morrow, P. E., Speers, D. M., Gibb, F. R. (1986). Inhalation of 0.30 ppm nitrogen dioxide potentiates exercise-induced bronchospasm in asthmatics. American Review of Respiratory Disease, 134(5), 12031208.Google ScholarPubMed
Beck, I., Jochner, S., Gilles, S., et al. (2013). High environmental ozone levels lead to enhanced allergenicity of birch pollen. PLoS One, 8(11), e80147.CrossRefGoogle ScholarPubMed
Behrendt, H., Becker, W.-M. (2001). Localization, release and bioavailability of pollen allergens: the influence of environmental factors. Current Opinion in Immunology, 13(6), 709715.CrossRefGoogle ScholarPubMed
Bell, M. L., McDermott, A., Zeger, S. L., Samet, J. M., Dominici, F. (2004). Ozone and short-term mortality in 95 US urban communities, 1987–2000. Journal of the American Medical Association, 292(19), 23722378.CrossRefGoogle ScholarPubMed
Bell, M. L., Zanobetti, A., Dominici, F. (2014). Who is more affected by ozone pollution? A systematic review and meta-analysis. American Journal of Epidemiology, 180(1), 1528.CrossRefGoogle ScholarPubMed
Bentayeb, M., Simoni, M., Baiz, N., et al. (2012). Adverse respiratory effects of outdoor air pollution in the elderly. The International Journal of Tuberculosis and Lung Disease, 16(9), 11491161.CrossRefGoogle ScholarPubMed
Bind, M.-A., Baccarelli, A., Zanobetti, A., et al. (2012). Air pollution and markers of coagulation, inflammation, and endothelial function: associations and epigene-environment interactions in an elderly cohort. Epidemiology, 23(2), 332340.CrossRefGoogle Scholar
Brunst, K. J., Leung, Y.-K., Ryan, P. H., et al. (2013). Forkhead box protein 3 (FOXP3) hypermethylation is associated with diesel exhaust exposure and risk for childhood asthma. The Journal of Allergy and Clinical Immunology, 131(2), 592594.e3.CrossRefGoogle ScholarPubMed
Burnett, R. T., Brook, J. R., Yung, W. T., Dales, R. E., Krewski, D. (1997). Association between ozone and hospitalization for respiratory diseases in 16 Canadian cities. Environmental Research, 72(1), 2431.CrossRefGoogle ScholarPubMed
Carvalho, A., Monteiro, A., Solman, S., Miranda, A. I., Borrego, C. (2010). Climate-driven changes in air quality over Europe by the end of the 21st century, with special reference to Portugal. Environmental Science & Policy, 13(6), 445458.CrossRefGoogle Scholar
Cecchi, L., D’amato, G., Ayres, J. G., et al. (2010). Projections of the effects of climate change on allergic asthma: the contribution of aerobiology. Allergy, 65(9), 10731081.CrossRefGoogle ScholarPubMed
Chang, H. H., Zhou, J., Fuentes, M. (2010). Impact of climate change on ambient ozone level and mortality in southeastern United States. International Journal of Environmental Research and Public Health, 7(7), 28662880.CrossRefGoogle ScholarPubMed
Chehregani, A., Kouhkan, F. (2008). Diesel exhaust particles and allergenicity of pollen grains of Lilium martagon. Ecotoxicology and Environmental Safety, 69(3), 568573.CrossRefGoogle ScholarPubMed
Chen, C.-H., Chan, C.-C., Chen, B.-Y., Cheng, T.-J., Guo, Y. L. (2015). Effects of particulate air pollution and ozone on lung function in non-asthmatic children. Environmental Research, 137, 4048.CrossRefGoogle ScholarPubMed
Chen, R., Cai, J., Meng, X., et al. (2014). Ozone and daily mortality rate in 21 cities of East Asia: how does season modify the association? American Journal of Epidemiology, 180(7), 729736.CrossRefGoogle ScholarPubMed
Chu, S., Zhang, H., Maher, C., et al. (2013). Prenatal and postnatal polycyclic aromatic hydrocarbon exposure, airway hyperreactivity, and beta-2 adrenergic receptor function in sensitized mouse offspring. Journal of Toxicology, 2013, 603581.CrossRefGoogle ScholarPubMed
Cortegano, I., Civantos, E., Aceituno, E., et al. (2004). Cloning and expression of a major allergen from Cupressus arizonica pollen, Cup a 3, a PR-5 protein expressed under polluted environment. Allergy, 59(5), 485490.CrossRefGoogle Scholar
Dawson, J. P., Adams, P. J., Pandis, S. N. (2007a). Sensitivity of ozone to summertime climate in the eastern USA: a modeling case study. Atmospheric Environment, 41(7), 14941511.CrossRefGoogle Scholar
Dawson, J. P., Adams, P. J., Pandis, S. N. (2007b). Sensitivity of PM2.5 to climate in the Eastern US: a modeling case study. Atmospheric Chemistry and Physics, 7(16), 42954309.CrossRefGoogle Scholar
Dawson, J. P., Racherla, P. N., Lynn, B. H., Adams, P. J., Pandis, S. N. (2008). Simulating present-day and future air quality as climate changes: model evaluation. Atmospheric Environment, 42(19), 45514566.CrossRefGoogle Scholar
Delfino, R. J., Coate, B. D., Zeiger, R. S., et al. (1996). Daily asthma severity in relation to personal ozone exposure and outdoor fungal spores. American Journal of Respiratory and Critical Care Medicine, 154(3), 633641.CrossRefGoogle ScholarPubMed
Devalia, J. L., Rusznak, C., Wang, J., et al. (1996). Air pollutants and respiratory hypersensitivity. Toxicology Letters, 86(2–3), 169176.CrossRefGoogle ScholarPubMed
Devlin, R. B., McDonnell, W. F., Mann, R., et al. (1991). Exposure of humans to ambient levels of ozone for 6.6 hours causes cellular and biochemical changes in the lung. American Journal of Respiratory Cell and Molecular Biology, 4(1), 7281.CrossRefGoogle ScholarPubMed
Diaz-Sanchez, D., Garcia, M. P., Wang, M., Jyrala, M., Saxon, A. (1999). Nasal challenge with diesel exhaust particles can induce sensitization to a neoallergen in the human mucosa. The Journal of Allergy and Clinical Immunology, 104(6), 11831188.CrossRefGoogle ScholarPubMed
Diaz-Sanchez, D., Tsien, A., Casillas, A., Dotson, A. R., Saxon, A. (1996). Enhanced nasal cytokine production in human beings after in vivo challenge with diesel exhaust particles. The Journal of Allergy and Clinical Immunology, 98(1), 114123.CrossRefGoogle ScholarPubMed
Diaz-Sanchez, D., Tsien, A., Fleming, J., Saxon, A. (1997). Combined diesel exhaust particulate and ragweed allergen challenge markedly enhances human in vivo nasal ragweed-specific IgE and skews cytokine production to a T helper cell 2-type pattern. The Journal of Immunology, 158(5), 24062413.CrossRefGoogle Scholar
Driessen, M. N. B. M., Quanjer, Ph. H. (1991). Pollen deposition in intrathoracic airways. European Respiratory Journal, 4(3), 359363.CrossRefGoogle ScholarPubMed
Factor, P., Akhmedov, A. T., McDonald, J. D., et al. (2011). Polycyclic aromatic hydrocarbons impair function of β2-adrenergic receptors in airway epithelial and smooth muscle cells. American Journal of Respiratory Cell and Molecular Biology, 45(5), 10451049.CrossRefGoogle ScholarPubMed
Fang, Y., Mauzerall, D. L., Liu, J., Fiore, A. M., Horowitz, L. W. (2013a). Impacts of 21st century climate change on global air pollution-related premature mortality. Climatic Change, 121(2), 239253.CrossRefGoogle Scholar
Fang, Y., Naik, V., Horowitz, L. W., Mauzerall, D. L. (2013b). Air pollution and associated human mortality: the role of air pollutant emissions, climate change and methane concentration increases from the preindustrial period to present. Atmospheric Chemistry and Physics, 13(3), 13771394.CrossRefGoogle Scholar
Fernvik, E., Peltre, G., Sénéchal, H., Vargaftig, B. B. (2002). Effects of birch pollen and traffic particulate matter on Th2 cytokines, immunoglobulin E levels and bronchial hyper-responsiveness in mice. Clinical and Experimental Allergy, 32(4), 602611.CrossRefGoogle ScholarPubMed
Forkel, R., Knoche, R. (2006). Regional climate change and its impact on photooxidant concentrations in southern Germany: simulations with a coupled regional climate-chemistry model. Journal of Geophysical Research: Atmospheres, 111(D12), D12302.CrossRefGoogle Scholar
Fu, A., Leaderer, B. P., Gent, J. F., Leaderer, D., Zhu, Y. (2012). An environmental epigenetic study of ADRB2 5′-UTR methylation and childhood asthma severity. Clinical and Experimental Allergy, 42(11), 15751581.CrossRefGoogle ScholarPubMed
Fujimaki, H., Nohara, O., Ichinose, T., Watanabe, N., Saito, S. (1994). IL-4 production in mediastinal lymph node cells in mice intratracheally instilled with diesel exhaust particulates and antigen. Toxicology, 92(1–3), 261268.CrossRefGoogle ScholarPubMed
Gao, Y., Fu, J. S., Drake, J. B., Lamarque, J.-F., Liu, Y. (2013). The impact of emission and climate change on ozone in the United States under representative concentration pathways (RCPs). Atmospheric Chemistry and Physics, 13(18), 96079621.CrossRefGoogle ScholarPubMed
Ghiani, A., Aina, R., Asero, R., Bellotto, E., Citterio, S. (2012). Ragweed pollen collected along high-traffic roads shows a higher allergenicity than pollen sampled in vegetated areas. Allergy, 67(7), 887894.CrossRefGoogle Scholar
Gilliland, F. D., Li, Y.-F., Saxon, A., Diaz-Sanchez, D. (2004). Effect of glutathione-S-transferase M1 and P1 genotypes on xenobiotic enhancement of allergic responses: randomised, placebo-controlled crossover study. The Lancet, 363(9403), 119125.CrossRefGoogle ScholarPubMed
Gosling, S. N., McGregor, G. R., Lowe, J. A. (2012). The benefits of quantifying climate model uncertainty in climate change impacts assessment: an example with heat-related mortality change estimates. Climatic Change, 112(2), 217231.CrossRefGoogle Scholar
Gosling, S. N., McGregor, G. R., Páldy, A. (2007). Climate change and heat-related mortality in six cities Part 1: model construction and validation. International Journal of Biometeorology, 51(6), 525540.CrossRefGoogle ScholarPubMed
Granum, B., Gaarder, P. I., Løvik, M. (2001). IgE adjuvant effect caused by particles – immediated and delayed effects. Toxicology, 156(2–3), 149159.CrossRefGoogle Scholar
Gruzieva, O., Gehring, U., Aalberse, R., et al. (2014). Meta-analysis of air pollution exposure association with allergic sensitization in European birth cohorts. The Journal of Allergy and Clinical Immunology, 133(3), 767776.CrossRefGoogle ScholarPubMed
Halonen, J. I., Lanki, T., Yli-Tuomi, T., et al. (2009). Particulate air pollution and acute cardiorespiratory hospital admissions and mortality among the elderly. Epidemiology, 20(1), 143153.CrossRefGoogle ScholarPubMed
Hamada, K., Suzaki, Y., Leme, A., et al. (2007). Exposure of pregnant mice to an air pollutant aerosol increases asthma susceptibility in offspring. Journal of Toxicology and Environmental Health, Part A, 70(8), 688695.CrossRefGoogle Scholar
Hedegaard, G. B., Christensen, J. H., Brandt, J. (2013). The relative importance of impacts from climate change vs. emissions change on air pollution levels in the 21st century. Atmospheric Chemistry and Physics, 13(7), 35693585.CrossRefGoogle Scholar
Heinrich, J., Hoelscher, B., Wjst, M., et al. (1999). Respiratory diseases and allergies in two polluted areas in East Germany. Environmental Health Perspectives, 107(1), 5362.CrossRefGoogle ScholarPubMed
Heo, Y., Saxon, A., Hankinson, O. (2001). Effect of diesel exhaust particles and their components on the allergen-specific IgE and IgG1 response in mice. Toxicology, 159(3), 143158.CrossRefGoogle ScholarPubMed
Hogrefe, C., Leung, R., Mickley, L., Hunt, S., Winner, D. (2005). Considering climate change in air quality management. EM [Environmental Manager, Air & Waste Management Association], October, 1923.Google Scholar
Hogrefe, C., Lynn, B., Civerolo, K., et al. (2004). Simulating changes in regional air pollution over the eastern United States due to changes in global and regional climate and emissions. Journal of Geophysical Research: Atmospheres, 109(D22), D22301.CrossRefGoogle Scholar
Horstman, D. H., Folinsbee, L. J., Ives, P. J., Abdul-Salaam, S., McDonnell, W. F. (1990). Ozone concentration and pulmonary response relationships for 6.6-hour exposures with five hours of moderate exercise to 0.08, 0.10, and 0.12 ppm. American Review of Respiratory Disease, 142(5), 11581163.CrossRefGoogle ScholarPubMed
Horton, D. E., Harshvardhan, , Diffenbaugh, N. S. (2012). Response of air stagnation frequency to anthropogenically enhanced radiative forcing. Environmental Research Letters, 7(4), 044034.CrossRefGoogle ScholarPubMed
Howlett, B. J., Knox, R. B. (1984). Allergic interactions. In: Linskens, H. F., Heslop-Harrison, J., eds. Cellular Interactions. Encyclopedia of Plant Physiology, New Series, Volume 17. Berlin: Springer-Verlag, pp. 655673.Google Scholar
Huang, H.-C., Liang, X.-Z., Kunkel, K. E., Caughey, M., Williams, A. (2007). Seasonal simulation of tropospheric ozone over the midwestern and northeastern United States: an application of a coupled regional climate and air quality modeling system. Journal of Applied Meteorology and Climatology, 46(7), 945960.CrossRefGoogle Scholar
Inoue, K., Takano, H., Sakurai, M., et al. (2006). Pulmonary exposure to diesel exhaust particles enhances coagulatory disturbance with endothelial damage and systemic inflammation related to lung inflammation. Experimental Biology and Medicine, 231(10), 16261632.CrossRefGoogle ScholarPubMed
Ishizaki, T., Koizumi, K., Ikemori, R., Ishiyama, Y., Kushibiki, E. (1987). Studies of prevalence of Japanese cedar pollinosis among the residents in a densely cultivated area. Annals of Allergy, 58(4), 265270.Google Scholar
Jacob, D. J. (2005). Interactions of Climate Change and Air Quality: Research Priorities and New Direction. Report from a Workshop, 26–27 April 2005, Washington, DC. Program on Technology Innovation, 1012169. Palo Alto, CA: Electric Power Research Institute.Google Scholar
Jacob, D. J., Winner, D. A. (2009). Effect of climate change on air quality. Atmospheric Environment, 43(1), 5163.CrossRefGoogle Scholar
Jacobson, M. Z. (2008). On the causal link between carbon dioxide and air pollution mortality. Geophysical Research Letters, 35(3), L03809.CrossRefGoogle Scholar
Jerrett, M., Shankardass, K., Berhane, K., et al. (2008). Traffic-related air pollution and asthma onset in children: a prospective cohort study with individual exposure measurement. Environmental Health Perspectives, 116(10), 14331438.CrossRefGoogle ScholarPubMed
Jhun, I., Fann, N., Zanobetti, A., Hubbell, B. (2014). Effect modification of ozone-related mortality risks by temperature in 97 US cities. Environment International, 73, 128134.CrossRefGoogle ScholarPubMed
Jung, K. H., Patel, M. M., Moors, K., et al. (2010). Effects of heating season on residential indoor and outdoor polycyclic aromatic hydrocarbons, black carbon, and particulate matter in an urban birth cohort. Atmospheric Environment, 44(36), 45454552.Google Scholar
Jung, K. H., Yan, B., Moors, K., et al. (2012). Repeated exposure to polycyclic aromatic hydrocarbons and asthma: effect of seroatopy. Annals of Allergy, Asthma & Immunology, 109(4), 249254.CrossRefGoogle ScholarPubMed
Kadkhoda, K., Pourfathollah, A. A., Pourpak, Z., Kazemnejad, A. (2005). The cumulative activity of benzo(a)pyrene on systemic immune responses with mite allergen extract after intranasal instillation and ex vivo response to ovalbumin in mice. Toxicology Letters, 157(1), 3139.CrossRefGoogle ScholarPubMed
Kahle, J. J., Neas, L. M., Devlin, R. B., et al. (2015). Interaction effects of temperature and ozone on lung function and markers of systemic inflammation, coagulation, and fibrinolysis: a crossover study of healthy young volunteers. Environmental Health Perspectives, 123(4), 310316.CrossRefGoogle ScholarPubMed
Kan, H., Chen, R., Tong, S. (2012). Ambient air pollution, climate change, and population health in China. Environment International, 42, 1019.CrossRefGoogle ScholarPubMed
Kanoh, T., Suzuki, T., Ishimori, M., et al. (1996). Adjuvant activities of pyrene, anthracene, fluoranthene and benzo(a)pyrene in production of anti-IgE antibody to Japanese cedar pollen allergen in mice. Journal of Clinical & Laboratory Immunology, 48(4), 133147.Google ScholarPubMed
Katragkou, E., Zanis, P., Kioutsioukis, I., et al. (2011). Future climate change impacts on summer surface ozone from regional climate-air quality simulations over Europe. Journal of Geophysical Research: Atmospheres, 116(D22), D22307.CrossRefGoogle Scholar
Kinney, P. L. (2008). Climate change, air quality, and human health. American Journal of Preventive Medicine, 35(5), 459467.CrossRefGoogle ScholarPubMed
Kinney, P. L., Nilsen, D. M., Lippmann, M., et al. (1996). Biomarkers of lung inflammation in recreational joggers exposed to ozone. American Journal of Respiratory and Critical Care Medicine, 154(5), 14301435.CrossRefGoogle ScholarPubMed
Kinney, P. L., Özkaynak, H. (1991). Associations of daily mortality and air pollution in Los Angeles County. Environmental Research, 54(2), 99120.CrossRefGoogle ScholarPubMed
Kinney, P. L., Ware, J. H., Spengler, J. D., et al. (1989). Short-term pulmonary function change in association with ozone levels. American Review of Respiratory Disease, 139(1), 5661.CrossRefGoogle ScholarPubMed
Knowlton, K., Hogrefe, C., Lynn, B., et al. (2008). Impacts of heat and ozone on mortality risk in the New York City metropolitan region under a changing climate. In: Thomson, M. C., Garcia-Herrera, R., Beniston, M., eds. Seasonal Forecasts, Climatic Change and Human Health. The Netherlands: Springer, pp. 143160.CrossRefGoogle Scholar
Knowlton, K., Rosenthal, J. E., Hogrefe, C., et al. (2004). Assessing ozone-related health impacts under a changing climate. Environmental Health Perspectives, 112(15), 15571563.CrossRefGoogle Scholar
Knox, R. B., Suphioglu, C., Taylor, P., et al. (1997). Major grass pollen allergen Lol p 1 binds to diesel exhaust particles: implications for asthma and air pollution. Clinical and Experimental Allergy, 27(3), 246251.CrossRefGoogle Scholar
Kobayashi, T. (2000). Exposure to diesel exhaust aggravates nasal allergic reaction in guinea pigs. American Journal of Respiratory and Critical Care Medicine, 162(2), 352356.CrossRefGoogle ScholarPubMed
Künzli, N., Perez, L., Rapp, R. (2010). Air Quality and Health. Lausanne, Switzerland: European Respiratory Society.Google Scholar
Lam, Y. F., Fu, J. S., Wu, S., Mickley, L. J. (2011). Impacts of future climate change and effects of biogenic emissions on surface ozone and particulate matter concentrations in the United States. Atmospheric Chemistry and Physics, 11(10), 47894806.CrossRefGoogle Scholar
Langner, J., Engardt, M., Baklanov, A., et al. (2012). A multi-model study of impacts of climate change on surface ozone in Europe. Atmospheric Chemistry and Physics, 12(21), 1042310440.CrossRefGoogle Scholar
Leung, L. R., Gustafson Jr, W. I. (2005). Potential regional climate change and implications to U.S. air quality. Geophysical Research Letters, 32(16), L16711.CrossRefGoogle Scholar
Li, T., Yan, M., Ma, W., et al. (2015). Short-term effects of multiple ozone metrics on daily mortality in a megacity of China. Environmental Science and Pollution Research, 22(11), 87388746.CrossRefGoogle Scholar
Liang, X.-Z., Pan, J., Zhu, J., et al. (2006). Regional climate model downscaling of the U.S. summer climate and future change. Journal of Geophysical Research: Atmospheres, 111(D10), D10108.CrossRefGoogle Scholar
Liao, K.-J., Tagaris, E., Russell, A. G., et al. (2010). Cost analysis of impacts of climate change on regional air quality. Journal of the Air & Waste Management Association, 60(2), 195203.CrossRefGoogle ScholarPubMed
Likhvar, V. N., Pascal, M., Markakis, K., et al. (2015). A multi-scale health impact assessment of air pollution over the 21st century. Science of the Total Environment, 514, 439449.CrossRefGoogle Scholar
Lin, S., Bell, E. M., Liu, W., et al. (2008). Ambient ozone concentration and hospital admissions due to childhood respiratory diseases in New York State, 1991–2001. Environmental Research, 108(1), 4247.CrossRefGoogle ScholarPubMed
Liu, J., Ballaney, M., Al-alem, U., et al. (2008). Combined inhaled diesel exhaust particles and allergen exposure alter methylation of T helper genes and IgE production in vivo. Toxicological Sciences, 102(1), 7681.CrossRefGoogle ScholarPubMed
Liu, J., Zhang, L., Winterroth, L. C., et al. (2013). Epigenetically mediated pathogenic effects of phenanthrene on regulatory T cells. Journal of Toxicology, 2013, 967029.CrossRefGoogle ScholarPubMed
Løvik, M., Høgseth, A.-K., Gaarder, P. I., Hagemann, R., Eide, I. (1997). Diesel exhaust particles and carbon black have adjuvant activity on the local lymph node response and systemic IgE production to ovalbumin. Toxicology, 121(2), 165178.CrossRefGoogle ScholarPubMed
Maejima, K., Tamura, K., Taniguchi, Y., Nagase, S., Tanaka, H. (1997). Comparison of the effects of various fine particles on IgE antibody production in mice inhaling Japanese cedar pollen allergens. Journal of Toxicology and Environmental Health, 52(3), 231248.CrossRefGoogle ScholarPubMed
Mahmud, A., Hixson, M., Kleeman, M. J. (2012). Quantifying population exposure to airborne particulate matter during extreme events in California due to climate change. Atmospheric Chemistry and Physics, 12(16), 74537463.Google Scholar
Masuch, G., Franz, J.-Th., Schoene, K., Müsken, H., Bergmann, K.-Ch. (1997). Ozone increases group 5 allergen content of Lolium perenne. Allergy, 52(8), 874875.CrossRefGoogle ScholarPubMed
Matsumoto, A., Hiramatsu, K., Li, Y., et al. (2006). Repeated exposure to low-dose diesel exhaust after allergen challenge exaggerates asthmatic responses in mice. Clinical Immunology, 121(2), 227235.CrossRefGoogle ScholarPubMed
McClellan, R. O. (1987). Health effects of exposure to diesel exhaust particles. Annual Review of Pharmacology and Toxicology, 27, 279300.CrossRefGoogle ScholarPubMed
Mickley, L. J., Jacob, D. J., Field, B. D., Rind, D. (2004). Effects of future climate change on regional air pollution episodes in the United States. Geophysical Research Letters, 31(24), L24103.CrossRefGoogle Scholar
Miller, R. L., Garfinkel, R., Horton, M., et al. (2004). Polycyclic aromatic hydrocarbons, environmental tobacco smoke, and respiratory symptoms in an inner-city birth cohort. Chest, 126(4), 10711078.CrossRefGoogle Scholar
Miller, R. L., Garfinkel, R., Lendor, C., et al. (2010). Polycyclic aromatic hydrocarbon metabolite levels and pediatric allergy and asthma in an inner-city cohort. Pediatric Allergy and Immunology, 21(2), 260267.CrossRefGoogle Scholar
Miller, R. L., Peden, D. B. (2014). Environmental effects on immune responses in patients with atopy and asthma. The Journal of Allergy and Clinical Immunology, 134(5), 10011008.CrossRefGoogle ScholarPubMed
Morgenstern, V., Zutavern, A., Cyrys, J., et al. (2008). Atopic diseases, allergic sensitization, and exposure to traffic-related air pollution in children. American Journal of Respiratory and Critical Care Medicine, 177(12), 13311337.CrossRefGoogle ScholarPubMed
Motta, A. C., Marliere, M., Peltre, G., Sterenberg, P. A., Lacroix, G. (2006). Traffic-related air pollutants induce the release of allergen-containing cytoplasmic granules from grass pollen. International Archives of Allergy and Immunology, 139(4), 294298.CrossRefGoogle ScholarPubMed
Muranaka, M., Suzuki, S., Koizumi, K., et al. (1986). Adjuvant activity of diesel-exhaust particulates for the production of IgE antibody in mice. The Journal of Allergy and Clinical Immunology, 77(4), 616623.CrossRefGoogle ScholarPubMed
Murazaki, K., Hess, P. (2006). How does climate change contribute to surface ozone change over the United States? Journal of Geophysical Research: Atmospheres, 111(D05), D05301.CrossRefGoogle Scholar
Nadeau, K., McDonald-Hyman, C., Noth, E. M., et al. (2010). Ambient air pollution impairs regulatory T-cell function in asthma. The Journal of Allergy and Clinical Immunology, 126(4), 845852.e10.CrossRefGoogle ScholarPubMed
Namork, E., Johansen, B. V., Løvik, M. (2006). Detection of allergens adsorbed to ambient air particles collected in four European cities. Toxicology Letters, 165(1), 7178.CrossRefGoogle ScholarPubMed
Nolte, C. G., Gilliland, A. B., Hogrefe, C., Mickley, L. J. (2008). Linking global to regional models to assess future climate impacts on surface ozone levels in the United States. Journal of Geophysical Research: Atmospheres, 113(D14), D14307.CrossRefGoogle Scholar
Nygaard, U. C., Ormstad, H., Aase, A., Løvik, M. (2005). The IgE adjuvant effect of particles: characterisation of the primary cellular response in the draining lymph node. Toxicology, 206(2), 181193.CrossRefGoogle ScholarPubMed
Nygaard, U. C., Samuelsen, M., Aase, A., Løvik, M. (2004). The capacity of particles to increase allergic sensitization is predicted by particle number and surface area, not by particle mass. Toxicological Sciences, 82(2), 515524.CrossRefGoogle Scholar
Ormstad, H. (2000). Suspended particulate matter in indoor air: adjuvants and allergen carriers. Toxicology, 152(1–3), 5368.CrossRefGoogle ScholarPubMed
Ormstad, H., Johansen, B. V., Gaarder, P. I. (1998). Airborne house dust particles and diesel exhaust particles as allergen carriers. Clinical and Experimental Allergy, 28(6), 702708.CrossRefGoogle ScholarPubMed
Orru, H., Andersson, C., Ebi, K. L., et al. (2013). Impact of climate change on ozone-related mortality and morbidity in Europe. European Respiratory Journal, 41(2), 285294.CrossRefGoogle ScholarPubMed
Patel, M. M., Quinn, J. W., Jung, K. H., et al. (2011). Traffic density and stationary sources of air pollution associated with wheeze, asthma, and immunoglobulin E from birth to age 5 years among New York City children. Environmental Research, 111(8), 12221229.CrossRefGoogle ScholarPubMed
Perzanowski, M. S., Chew, G. L., Divjan, A., et al. (2013). Early-life cockroach allergen and polycyclic aromatic hydrocarbon exposures predict cockroach sensitization among inner-city children. The Journal of Allergy and Clinical Immunology, 131(3), 886893.e6.CrossRefGoogle ScholarPubMed
Petersen, A., Schramm, G., Schlaak, M., Becker, W.-M. (1998). Post-translational modifications influence IgE reactivity to the major allergen Phl p 1 of timothy grass pollen. Clinical and Experimental Allergy, 28(3), 315321.CrossRefGoogle Scholar
Pope III, C. A., Dockery, D. W. (2006). Health effects of fine particulate air pollution: lines that connect. Journal of the Air & Waste Management Association, 56(6), 709742.CrossRefGoogle Scholar
Post, E. S., Grambsch, A., Weaver, C., et al. (2012). Variation in estimated ozone-related health impacts of climate change due to modeling choices and assumptions. Environmental Health Perspectives, 120(11), 15591564.CrossRefGoogle ScholarPubMed
Prestera, T., Talalay, P. (1995). Electrophile and antioxidant regulation of enzymes that detoxify carcinogens. Proceedings of the National Academy of Sciences of the United States of America, 92(19), 89658969.CrossRefGoogle ScholarPubMed
Racherla, P. N., Adams, P. J. (2006). Sensitivity of global tropospheric ozone and fine particulate matter concentrations to climate change. Journal of Geophysical Research: Atmospheres, 111(D24), D24103.CrossRefGoogle Scholar
Racherla, P. N., Adams, P. J. (2008). The response of surface ozone to climate change over the eastern United States. Atmospheric Chemistry and Physics, 8(4), 871885.CrossRefGoogle Scholar
Racherla, P. N., Adams, P. J. (2009). U.S. ozone air quality under changing climate and anthropogenic emissions. Environmental Science & Technology, 43(3), 571577.CrossRefGoogle ScholarPubMed
Rogerieux, F., Godfrin, D., Sénéchal, H., et al. (2007). Modifications of Phleum pratense grass pollen allergens following artificial exposure to gaseous air pollutants (O3, NO2, SO2). International Archives of Allergy and Immunology, 143(2), 127134.CrossRefGoogle Scholar
Rosa, M. J., Jung, K. H., Perzanowski, M. S., et al. (2011). Prenatal exposure to polycyclic aromatic hydrocarbons, environmental tobacco smoke and asthma. Respiratory Medicine, 105(6), 869876.CrossRefGoogle ScholarPubMed
Samuelsen, M., Nygaard, U. C., Løvik, M. (2008). Allergy adjuvant effect of particles from wood smoke and road traffic. Toxicology, 246(2–3), 124131.CrossRefGoogle ScholarPubMed
Schoene, K., Franz, J.-Th., Masuch, G. (2004). The effect of ozone on pollen development in Lolium perenne L. Environmental Pollution, 131(3), 347354.CrossRefGoogle ScholarPubMed
Sheffield, P. E., Knowlton, K., Carr, J. L., Kinney, P. L. (2011). Modeling of regional climate change effects on ground-level ozone and childhood asthma. American Journal of Preventive Medicine, 41(3), 251257.CrossRefGoogle ScholarPubMed
Silverman, R. A., Ito, K. (2010). Age-related association of fine particles and ozone with severe acute asthma in New York City. The Journal of Allergy and Clinical Immunology, 125(2), 367373.CrossRefGoogle ScholarPubMed
Steerenberg, P. A., Dormans, J. A. M. A., van Doorn, C. C. M., et al. (1999). A pollen model in the rat for testing adjuvant activity of air pollution components. Inhalation Toxicology, 11(12), 11091122.CrossRefGoogle ScholarPubMed
Steiner, A. L., Tonse, S., Cohen, R. C., Goldstein, A. H., Harley, R. A. (2006). Influence of future climate and emissions on regional air quality in California. Journal of Geophysical Research: Atmospheres, 111(D18), D18303.CrossRefGoogle Scholar
Steinsvik, T. E., Ormstad, H., Gaarder, P. I., et al. (1998). Human IgE production in hu-PBL-SCID mice injected with birch pollen and diesel exhaust particles. Toxicology, 128(3), 219230.CrossRefGoogle ScholarPubMed
Stevenson, D. S., Dentener, F. J., Schultz, M. G., et al. (2006). Multimodel ensemble simulations of present-day and near-future tropospheric ozone. Journal of Geophysical Research: Atmospheres, 111(D08), D08301.CrossRefGoogle Scholar
Suárez-Cervera, M., Castells, T., Vega-Maray, A., et al. (2008). Effects of air pollution on Cup a 3 allergen in Cupressus arizonica pollen grains. Annals of Allergy, Asthma & Immunology, 101(1), 5766.CrossRefGoogle ScholarPubMed
Sujaritpong, S., Dear, K., Cope, M., Walsh, S., Kjellstrom, T. (2014). Quantifying the health impacts of air pollution under a changing climate – a review of approaches and methodology. International Journal of Biometeorology, 58(2), 149160.CrossRefGoogle Scholar
Suzuki, T., Kanoh, T., Ishimori, M., Ikeda, S., Ohkuni, H. (1996). Adjuvant activity of diesel exhaust particulates (DEP) in production of anti-IgE and anti-IgG1 antibodies to mite allergen in mice. Journal of Clinical and Laboratory Immunology, 48(5), 187199.Google ScholarPubMed
Tagaris, E., Liao, K.-J., Delucia, A. J., et al., (2009). Potential impact of climate change on air pollution-related human health effects. Environmental Science & Technology, 43(13), 49794988.CrossRefGoogle ScholarPubMed
Tagaris, E., Liao, K.-J., DeLucia, A. J., et al. (2010). Sensitivity of air pollution-induced premature mortality to precursor emissions under the influence of climate change. International Journal of Environmental Research and Public Health, 7(5), 22222237.CrossRefGoogle ScholarPubMed
Tagaris, E., Liao, K.-J., Manomaiphiboon, K., et al. (2008). The role of climate and emission changes in future air quality over southern Canada and northern Mexico. Atmospheric Chemistry and Physics, 8(14), 39733983.CrossRefGoogle Scholar
Tagaris, E., Manomaiphiboon, K., Liao, K.-J., et al. (2007). Impacts of global climate change and emissions on regional ozone and fine particulate matter concentrations over the United States. Journal of Geophysical Research: Atmospheres, 112(D14), D14312.CrossRefGoogle Scholar
Tai, A. P. K., Mickley, L. J., Jacob, D. J. (2012). Impact of 2000–2050 climate change on fine particulate matter (PM2.5) air quality inferred from a multi-model analysis of meteorological modes. Atmospheric Chemistry and Physics, 12(23), 1132911337.CrossRefGoogle Scholar
Takafuji, S., Suzuki, S., Koizumi, K., et al. (1987). Diesel-exhaust particulates inoculated by the intranasal route have an adjuvant activity for IgE production in mice. The Journal of Allergy and Clinical Immunology, 79(4), 639645.CrossRefGoogle ScholarPubMed
Takahashi, G., Tanaka, H., Wakahara, K., et al. (2010). Effect of diesel exhaust particles on house dust mite-induced airway eosinophilic inflammation and remodeling in mice. Journal of Pharmacological Sciences, 112(2), 192202.CrossRefGoogle ScholarPubMed
Takenaka, H., Zhang, K., Diaz-Sanchez, D., Tsien, A., Saxon, A. (1995). Enhanced human IgE production results from exposure to the aromatic hydrocarbons from diesel exhaust: direct effects on B-cell IgE production. The Journal of Allergy and Clinical Immunology, 95(1), 103115.Google Scholar
Tao, Z., Williams, A., Huang, H.-C., Caughey, M., Liang, X.-Z. (2007). Sensitivity of U.S. surface ozone to future emissions and climate changes. Geophysical Research Letters, 34(L08), L08811.CrossRefGoogle Scholar
The Royal Society (2008). Ground-Level Ozone in the 21st Century: Future Trends, Impacts and Policy Implications. Science Policy Report 15/08. London: The Royal Society.Google Scholar
Weaver, C. P., Liang, X.-Z., Zhu, J., et al. (2009). A preliminary synthesis of modeled climate change impacts on U.S. regional ozone concentrations. Bulletin of the American Meteorological Society, 90(12), 18431863.CrossRefGoogle Scholar
Westerholm, R. N., Almén, J., Li, H., et al. (1991). Chemical and biological characterization of particulate-, semivolatile-, and gas-phase-associated compounds in diluted heavy-duty diesel exhausts: a comparison of three different semivolatile-phase samplers. Environmental Science & Technology, 25(2), 332338.CrossRefGoogle Scholar
Winquist, A., Klein, M., Tolbert, P., et al. (2012). Comparison of emergency department and hospital admissions data for air pollution time-series studies. Environmental Health, 11, 70.CrossRefGoogle ScholarPubMed
World Health Organization (WHO) (2013). Review of Evidence on Health Aspects of Air Pollution – REVIHAAP Project: Technical Report. Copenhagen: World Health Organization Regional Office for Europe.Google Scholar
Wu, S., Mickley, L. J., Leibensperger, E. M., et al. (2008). Effects of 2000–2050 global change on ozone air quality in the United States. Journal of Geophysical Research: Atmospheres, 113(D06), D06302.Google Scholar
Yoshida, T., Yoshioka, Y., Fujimura, M., et al. (2010). Potential adjuvant effect of intranasal urban aerosols in mice through induction of dendritic cell maturation. Toxicology Letters, 199(3), 383388.CrossRefGoogle ScholarPubMed
Zeng, G., Pyle, J. A. (2003). Changes in tropospheric ozone between 2000 and 2100 modeled in a chemistry-climate model. Geophysical Research Letters, 30(7), 1392.CrossRefGoogle Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×