Hostname: page-component-7c8c6479df-p566r Total loading time: 0 Render date: 2024-03-27T09:32:31.179Z Has data issue: false hasContentIssue false

Study of Photoluminescence Properties of CuxO Thin Films Prepared by Reactive Radio Frequency Magnetron Sputtering

Published online by Cambridge University Press:  11 June 2015

Jiantuo Gan
Affiliation:
University of Oslo, Department of Physics /Center for Materials Science and Nanotechnology, P.O. Box 1048 Blindern, N-0316 Oslo, Norway
Augustinas Galeckas
Affiliation:
University of Oslo, Department of Physics /Center for Materials Science and Nanotechnology, P.O. Box 1048 Blindern, N-0316 Oslo, Norway
Vishnukanthan Venkatachalapathy
Affiliation:
University of Oslo, Department of Physics /Center for Materials Science and Nanotechnology, P.O. Box 1048 Blindern, N-0316 Oslo, Norway
Heine N. Riise
Affiliation:
University of Oslo, Department of Physics /Center for Materials Science and Nanotechnology, P.O. Box 1048 Blindern, N-0316 Oslo, Norway
Bengt G. Svensson
Affiliation:
University of Oslo, Department of Physics /Center for Materials Science and Nanotechnology, P.O. Box 1048 Blindern, N-0316 Oslo, Norway
Edouard V. Monakhov
Affiliation:
University of Oslo, Department of Physics /Center for Materials Science and Nanotechnology, P.O. Box 1048 Blindern, N-0316 Oslo, Norway
Get access

Abstract

CuxO thin films have been deposited on a quartz substrate by reactive radio frequency (rf) magnetron sputtering at different target powers Pt (140-190 W) while keeping other growth process parameters fixed. Room-temperature photoluminescence (PL) measurements indicate considerable improvement of crystallinity for the films deposited at Pt>170 W, with most pronounced excitonic features being observed in the film grown using Pt=190 W. These results corroborate well with the surface morphology of the films, which was found more flat, smooth and homogeneous for Pt >170 W films in comparison with those deposited at lower powers.

Type
Articles
Copyright
Copyright © Materials Research Society 2015 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Loferski, J. J., J. Appl. Phys. 27, 777 (1956).CrossRefGoogle Scholar
Mittiga, A., Salza, E., Sarto, F., Tucci, M, Vasanthi, R., Appl. Phys. Lett. 88, 163502 (2006).CrossRefGoogle Scholar
Minami, T., Nishi, Y., Miyata, T., Thin Solid Films 549, 65 (2013).CrossRefGoogle Scholar
Gan, J., Venkatachalapathy, V., Svensson, B. G., Monakhov, E. V., Thin Solid Films (accepted).Google Scholar
Pollack, G. P., Trivich, D., J. Appl. Phys. 46, 163 (1975).CrossRefGoogle Scholar
Meyer, B. K., Polity, A., Reppin, D., Becker, M., Hering, P., Kramm, B., Klar, P. J., Sander, T., Reindl, C., Heliger, C., Heinemann, M., Müller, C., Ronning, C., in Semiconductors and Semimetals: Oxide Semiconductors, edited by Svensson, B. G., Pearton, S. J. and Jagadish, C. (Elsevier Science Publishers, San Diego, 2013), p. 201.CrossRefGoogle Scholar
Garutharaa, R., Siripala, W., J. Lumin. 121, 173 (2006).CrossRefGoogle Scholar
Huang, C.-Y., Chatterjee, A., Liu, S. B., Wu, S. Y., Cheng, C.-L., Appl. Surf. Sci. 256, 3688 (2010).CrossRefGoogle Scholar
Bloem, J., Philips Res. Rep. 13, 167 (1958).Google Scholar
Biccari, F., PhD. Thesis, University of Rome, 2009.Google Scholar
Medina-Valtierra, J., Frausto-Reyes, C., Camarillo-Martinez, G., Ramirez-Ortiz, J. A., Appl. Catal., A 356, 36 (2009).CrossRefGoogle Scholar
Yin, Z. G., Zhang, H. T., Goodner, D. M., Bedzyk, M. J., Chang, R. P. H., Sun, Y., Ketterson, J. B., Appl. Phys. Lett. 86, 061901 (2005).CrossRefGoogle Scholar