Hostname: page-component-76fb5796d-25wd4 Total loading time: 0 Render date: 2024-04-25T22:58:34.747Z Has data issue: false hasContentIssue false

Cation Size and Disorder Effects in Conducting Perovskite Oxides

Published online by Cambridge University Press:  16 February 2011

J. Paul Attifield
Affiliation:
Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW and Interdisciplinary Research Centre in Superconductivity, University of Cambridge, Madingley Road, Cambridge CB3 0HE, UK, jpal4@cam.ac.uk
Andrei L. Kharlanov
Affiliation:
Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW and Interdisciplinary Research Centre in Superconductivity, University of Cambridge, Madingley Road, Cambridge CB3 0HE, UK, jpal4@cam.ac.uk
Judith A. McAllister
Affiliation:
Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW and Interdisciplinary Research Centre in Superconductivity, University of Cambridge, Madingley Road, Cambridge CB3 0HE, UK, jpal4@cam.ac.uk
Lide M. Rodriguez-Martinez
Affiliation:
Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW and Interdisciplinary Research Centre in Superconductivity, University of Cambridge, Madingley Road, Cambridge CB3 0HE, UK, jpal4@cam.ac.uk
Get access

Abstract

The electronic and magnetic properties of ATO3 and related perovskites (A is a mixture of lanthanide Ln3+ and alkaline earth M2+ cations; T is a transition metal) are very sensitive to the A site composition. The importance of doping effects controlled by the Ln3+/M2+ ratio is well-known, but the other lattice effects controlled by the sizes of these cations are less well understood. A simple approach making use of the mean (first moment) and the variance (second moment) in the A cation distribution has been applied to the metal-insulator transition temperature in colossal magnetoresistance AMnO3 perovskites and to the critical temperature in A2CuO4 and LnBa2Cu3O7-δ superconductors. Series of compositions prepared with a constant doping level and mean A cation radius show a linear decrease of the transition temperature Tt with the A cation size variance σ2. The rate of decrease -dTt/dσ2 is found to lie in the range 1,000-30,000 KÅ-2. The orthorhombic-tetra onal structural transition in the A2CuO4 materials is found to show a linear increase with σ2. A pair of quadratic relationships for the mean size and size variance effects are proposed to be the result of changing strain energies that give rise to these effects.

Type
Research Article
Copyright
Copyright © Materials Research Society 1999

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Cox, P. A., Transition Metal Oxides; International Series of Monographs on Chemistry: 27, Oxford Science Publications, Oxford, 1992.Google Scholar
2. Rao, C. N. R. and Raveau, B., Transition Metal Oxides, VCH Publishers, New York, 1995.Google Scholar
3. Burns, G., High Temperature Superconductivity, Academic Press, 1992.Google Scholar
4. Raveau, B., Maignan, A., Martin, C. and Hervieu, M., Chem. Mater. 10, 2641 (1998).Google Scholar
5. Goldschmidt, V. M., Skr. Nor. Videnk.-Akad., KI. 1: Mat.-Naturvidensk. KI. 8 (1926).Google Scholar
6. Geller, S., J. Chem. Phys. 24, 1236 (1956).Google Scholar
7. Tokura, Y., Tomioka, Y., Kuwahara, H., Asamitsu, A., Moritomo, Y. and Kasai, M., J. Appl. Phys. 79, 5288 (1996).Google Scholar
8. Shannon, R. D., Acta Crystallogr. A32, 751 (1976).Google Scholar
9. Rodriguez-Martinez, L. M. and Attfield, J. P., Phys. Rev. B 54, R15622 (1996).Google Scholar
10. Rodriguez-Martinez, L. M. and Attfield, J. P., Phys. Rev. B 58, 2426 (1998).Google Scholar
11. Rodriguez-Martinez, L. M. and Attfield, J. P., submitted to Chem. Mater.Google Scholar
12. Tomioka, Y., Asamitsu, A., Kuwahara, H., Moritomo, Y. and Tokura, Y., Phys. Rev. B 53, R1689 (1996).Google Scholar
13. Damay, F., Martin, C., Maignan, A. and Raveau, B., J. Appl. Phys. 82, 6181 (1997).Google Scholar
14. Attfield, J. P., Kharlanov, A. L. and McAllister, J. A., Nature 394, 157 (1998).Google Scholar
15. Crawford, M. K., Harlow, R. L., McCarron, E. M., Tozer, S. W., Huang, Q., Cox, D. E. and Zhu, Q. in High-Tc Superconductivity 1996: Ten Years after the Discovery, edited by Kaldis, E. et al. , Kluwer, 1997, pp. 281310.Google Scholar
16. Attfield, J. P., Chem. Mater 10, 3239 (1998).Google Scholar
17. Bordet, P., Duc, F., Radaelli, P. G., Lanzara, A., Saini, N., Bianconi, A. and Antipov, E. V., Physica C 282, 1081 (1997).Google Scholar
18. Kazakov, S. M., Chaillout, C., Bordet, P., Capponi, J. J., Nunez-Regueiro, M., Rysak, A., Tholence, J. L., Radaelli, P. G., Putilin, S. N. and Antipov, E. V., Nature 390, 148 (1997).Google Scholar