Hostname: page-component-8448b6f56d-wq2xx Total loading time: 0 Render date: 2024-04-19T05:44:18.468Z Has data issue: false hasContentIssue false

The Crystal Sructure of Anthracene up to 22 GPa: a X-ray Diffraction Study

Published online by Cambridge University Press:  15 February 2011

Martin Oehzelt
Affiliation:
Institute of Solid State Physics, Graz University of Technology, Petersgasse 16, 8010 Graz, Austria
Georg Heimel
Affiliation:
Institute of Solid State Physics, Graz University of Technology, Petersgasse 16, 8010 Graz, Austria
Roland Resel
Affiliation:
Institute of Solid State Physics, Graz University of Technology, Petersgasse 16, 8010 Graz, Austria
Peter Puschnig
Affiliation:
Institute for Theoretical Physics, Karl-Franzens-Universität Graz, Universitätsplatz 5, 8010 Graz, Austria
Kerstin Hummer
Affiliation:
Institute for Theoretical Physics, Karl-Franzens-Universität Graz, Universitätsplatz 5, 8010 Graz, Austria
Claudia Ambrosch-Draxl
Affiliation:
Institute for Theoretical Physics, Karl-Franzens-Universität Graz, Universitätsplatz 5, 8010 Graz, Austria
Kenichi Takemura
Affiliation:
National Institute for Research Materials Science, Namiki 1-1, Tsukuba, Ibaraki 305-0044, Japan
Atsuko Nakayama
Affiliation:
Research Center for Advanced Carbon Materials, National Institute of Advanced Industrial Science and Technology, Central 5, 1-1-1 Higashi, Tsukuba, Ibaraki 305-8565, Japan
Get access

Abstract

The aim of this study is to investigate the crystalline structure of anthracene C14H10 under high pressure performing angle dispersive x-ray diffraction experiments using synchrotron radiation in combination with Rietveld refinements and rigid body approximation. High hydrostatic pressure was applied up to 27.8 GPa using a diamond anvil cell. Full structural information (molecular orientations and lattice constants) is given up to a pressure of 20.3 GPa. At the highest pressure of 22.7 GPa the unit cell volume is decreased by 36.8%. Fourier transformation of the diffracted intensities reveals the electron density distribution within the unit cell. A pressure induced increase of the electron densities between adjacent molecules is observed. These findings are shown to be in agreement with theoretical calculations and hint towards the evolution of the anisotropic conductivity with pressure.

Type
Research Article
Copyright
Copyright © Materials Research Society 2003

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Karl, N., “Organic Semiconductors in: Landolt-Börnstein (New Series)”, ed. Madelung, O., Schulz, M. and Weiss, H. (Springer-Verlag 1985).Google Scholar
2. Horowitz, G., Adv. Mater. 10, 365 (1998).Google Scholar
3. Laudise, R. A., Kloc, Ch., Simpkins, P. G., and Siegrist, T., J. Cryst. Growth 187, 449 (1998).Google Scholar
4. Zojer, E., Knupfer, M., Resel, R., Meghdadi, F., Leising, G.,and Fink, J., Phys. Rev. B56, 10138 (1997).Google Scholar
5. Palenberg, M. A., Silbey, R. J., Malagoli, M., and Bredas, J. L., J. Chem.Phys. 112, 1541 (2000).Google Scholar
6. Cornil, J., Calbert, J. Ph., Beljonne, D., Silbey, R., and Bredas, J. L., Synth. Met. 119, 1 (2001).Google Scholar
7. Elnahwy, S. A., Hamamsy, M. El, and Damask, A. C., Phys. Rev. B19, 1108 (1978).Google Scholar
8. Yanagi, H., and Okamoto, S., Appl. Phys. Lett. 71, 2563 (1997).Google Scholar
9. Brock, C. P., and Dunitz, J. D., Acta. Cryst. B46, 795 (1990).Google Scholar
10. Oehzelt, M., Resel, R., and Nakayama, A., Phys. Rev. B66, 174104 (2002).Google Scholar
11. Jayaraman, A., Rev. Mod. Phys. 55, 65 (1983).Google Scholar
12. Takemura, K., J. Appl. Phys. 89, 662 (2001).Google Scholar
13. Fukuhara, M., Matsui, A. H., and Takeshima, M., Chem. Phys. 258, 97 (2000).Google Scholar
14. Takemura, K., Sahu, P. Ch., Kunii, Y., and Toma, Y., Rev. Sci. Instrum. 72, 3873 (2001).Google Scholar
15. Dreele, R. B. Von, and Larson, A. C., LAUR 86-748 (1985-2000), (unpublished).Google Scholar
16. Hummer, K., Puschnig, P., and Ambrosch-Draxl, C., Phys. Rev. B: in print (2003).Google Scholar
17. Bredas, J.L., Calbert, J.P., Filho, D.A da Silva, and Cornil, J., Proc. Nat. Acad Sci USA 99, 5804 (2002)Google Scholar
18. Weinmeier, K., Puschnig, P., Ambrosch-Draxl, C., Heimel, G., Zojer, E., Resel, R., Mat. Res. Soc. Symp. Proc. 665, C8.20.1 (2001).Google Scholar
19. Offen, H. W., J. Chem. Phys. 44, 699 (1966).Google Scholar
20. Hummer, K., Puschnig, P., Ambrosch-Draxl, C., Oehzelt, M., Heimel, G., and Resel, R., Synth Met. 137, 935 (2003).Google Scholar