Hostname: page-component-8448b6f56d-m8qmq Total loading time: 0 Render date: 2024-04-24T15:45:36.701Z Has data issue: false hasContentIssue false

Algal stacks and fungal stacks as adaptations to high light in lichens

Published online by Cambridge University Press:  08 January 2013

Jan VONDRÁK
Affiliation:
Institute of Botany, Academy of Sciences, Zámek 1, Průhonice, CZ-25243, Czech Republic and Faculty of Science, University of South Bohemia, Branišovská 31, CZ-370 05, České Budějovice, Czech Republic. Email: j.vondrak@seznam.cz
Jiří KUBÁSEK
Affiliation:
Division of Impact Studies and Physiological Analyses, Global Change Research Centre ASCR, Bělidla 4a, Brno CZ-603 00 and Department of Plant Physiology, Faculty of Science, University of South Bohemia, Branišovská 31, České Budějovice, CZ-370 05

Abstract

Some lichens that occur in mountains and arid regions have developed an unusual anatomy resembling window-leaved plants. In these lichens, algal cells occur in thick vertical stacks (algal stacks) separated by vertical channels of light-transferring fungal hyphae (fungal stacks). We present experimental evidence that this anatomy permits higher rates of area-based CO2 assimilation in strong light, but that it also leads to higher respiration resulting in higher compensation irradiance. The net effect of this anatomy must be beneficial in regions of high insolation, as it has arisen many times in different parts of the world, and in unrelated lichens, and these lichens often dominate the communities in which they occur.

Type
Articles
Copyright
Copyright © British Lichen Society 2013

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Egbert, K. J. & Martin, C. E. (2000) Light penetration via leaf windows does not increase photosynthesis in three species of desert succulents. Journal of Plant Physiology 157: 521525.CrossRefGoogle Scholar
Follmann, G. (1965) Fensterflechten in der Atacamawüste. Die Naturwissenschaften 52: 434435.Google Scholar
Galloway, D. J. (2007) Flora of New Zealand Lichens. Revised Second Edition Including Lichen-Forming and Lichenicolous Fungi. Volumes 1 and 2. Lincoln, New Zealand: Manaaki Whenua Press.Google Scholar
Honegger, R. (1987) Questions about pattern formation in the algal layer of lichens with stratified (heteromerous) thalli. Bibliotheca Lichenologica 25: 5971.Google Scholar
Knudsen, K. (2007) Acarospora. In Lichen Flora of the Greater Sonoran Desert Region. Volume 3. (Nash, T. H. III, Gries, C. & Bungartz, F., eds): 138. Tempe, Arizona: Lichens Unlimited, Arizona State University.Google Scholar
Krulik, G. (1980) A. Light transmission in window-leaved plants. Canadian Journal of Botany 58: 15911600.Google Scholar
Nobel, P. S. (1989) Shoot temperatures and thermal tolerances for succulent species of Haworthia and Lithops . Plant, Cell and Environment 12: 643651.Google Scholar
Malcolm, W. M. (1995) Light transmission inside the thallus of Labyrintha implexa (Porpidiaceae, lichenized Ascomycetes). Bibliotheca Lichenologica 58: 275280.Google Scholar
Maxwell, K. & Johnson, G. N. (2000) Chlorophyll fluorescence – a practical guide. Journal of Experimental Botany 51: 659668.Google Scholar
Meyer, B. & Printzen, C. (2000) Proposal for a standardized nomenclature and characterization of insoluble lichen pigments. Lichenologist 32: 571583.Google Scholar
Ögren, E. (1993) Convexity of photosynthetic light-response curve in relation to intensity and direction of light during growth. Plant Physiology 101: 10131019.Google Scholar
Owe-Larsson, B., Nordin, A. & Tibell, L. (2007) Aspicilia. In Lichen Flora of the Greater Sonoran Desert Region. Volume 3. (Nash, T. H. III, Gries, C. & Bungartz, F., eds): 61108. Tempe, Arizona: Lichens Unlimited, Arizona State University.Google Scholar
Pintado, A., Sancho, L. G., Green, T. G. A., Blanquer, J. M. & Lazaro, R. (2005) Functional ecology of the biological soil crust in semiarid SE Spain: sun and shade populations of Diploschistes diacapsis (Ach.) Lumbsch. Lichenologist 37: 425432.CrossRefGoogle Scholar
Pintado, A., Sancho, L. G., Blanquer, J. M., Green, T. G. A. & Lazaro, R. (2010) Microclimatic factors and photosynthetic activity of crustose lichens from the semiarid southeast of Spain: long-term measurements for Diploschistes diacapsis . Bibliotheca Lichenologica 105: 211223.Google Scholar
Poelt, J. (1958) Die lobaten Arten der Flechtengattung Lecanora Ach. sensu ampl. in der Holarktis. Mitt. der Bot. Staatssammlung München 2: 411573.Google Scholar
Poelt, J. & Romauch, E. (1977) Die Lagerstrukturen placodialer Kusten- und Inlandsflechten. Ein Beitrag zur okologischen Anatomie der Flechten. In Beitrage zur Biologie de Niederen Pflanzen. Systematik, Stammesgeschichte, Okologie. (Frey, W., Hurka, H. & Oberwinkler, W., eds): 141153. Stuttgart: Gustav Fischer Verlag.Google Scholar
Rauh, W. (1971) Window-leaved succulents. Cacti and Succulents Journal 46: 1225.Google Scholar
Snelgar, W. P., Green, T. G. A. & Wilkins, A. L. (1981) Carbon dioxide exchange in lichens. Resistances to CO2 uptake at different thallus water contents. New Phytologist 88: 353361.CrossRefGoogle Scholar
Sohrabi, M., Ahti, T. & Litterski, B. (2011 a) Aspicilia digitata sp. nov., a new vagrant lichen from Kyrgyzstan. Lichenologist 43: 3946.CrossRefGoogle Scholar
Sohrabi, M., Stenroos, S., Högnabba, F., Nordin, A. & Owe-larsson, B. (2011 b) Aspicilia rogeri sp. nov. (Megasporaceae) and other allied vagrant species in North America. Bryologist 114: 178189.Google Scholar
Timdal, E. (1990) Gypsoplacaceae and Gypsoplaca, a new family and genus of squamiform lichens. Bibliotheca Lichenologica 38: 419427.Google Scholar
Vogel, S. (1955) Niedere “Fensterpflanzen” in der südafrikanischen Wüste. Eine ökologische Schilderung. Beiträge zur Biologie der Pflanzen 31: 45135.Google Scholar