Hostname: page-component-8448b6f56d-xtgtn Total loading time: 0 Render date: 2024-04-18T07:13:09.846Z Has data issue: false hasContentIssue false

Acritarchs and microfossils from the Mesoproterozoic Bangemall Group, northwestern Australia

Published online by Cambridge University Press:  14 July 2015

Roger Buick
Affiliation:
School of Geosciences, University of Sydney, Sydney NSW 2006, Australia
Andrew H. Knoll
Affiliation:
Botanical Museum, Harvard University, Cambridge MA 02138

Abstract

Three microfossil assemblages occur in the Mesoproterozoic Bangemall Group (1625-1000 Ma) of northwestern Australia, each occupying a different environmental and taphonomic setting. In peritidal environments, benthic prokaryotic filaments and spheroids of matting habit and small size were permineralized by early diagenetic silicification of stromatolitic carbonates. In shallow subtidal environments, benthic filaments of large size and nonmatting habit and planktonic sphaeromorph acritarchs with thin walls and moderate dimensions were compressed in mildly kerogenous shale. In deeper subtidal environments, planktonic megasphaeromorph acritarchs with thick walls were initially entombed in concretionary nodules in highly kerogenous shale and then permineralized by silica during later diagenesis. Taxonomic diversity and numerical abundance evidently decrease offshore. The three assemblages have typical Mesoproterozoic aspects: peritidal benthic habitats were dominated by Siphonophycus-Sphaerophycus-Eosynechococcus-Myxococcoides-Palaeopleurocapsa, shallow subtidal settings were occupied by Siphonophycus-Leiosphaeridia-Pterospermopsimorpha-Satka, and offshore plankton consisted solely of very large chuarid acritarchs. Because of its taphonomic restriction to mid-intertidal stromatolites, the peritidal assemblage can be equated in microenvironment with a similar assemblage in the Neoproterozoic Draken Conglomerate, suggesting that ecological stasis at the community level can last for intervals up to 900 million years. In the deeper subtidal assemblage, the common chuarid has an unusual mode of preservation, in three dimensions in early diagenetic concretions, revealing that it possesses a thick multilamellate wall. Because of this distinctive ultrastructure, the new genus Crassicorium is erected for these fossils, which are among the oldest indubitable eukaryotes. Very large (34-55 μm in diameter) filaments from shallow subtidal habitats are assigned to the emended species Siphonophycus punctatum.

Type
Research Article
Copyright
Copyright © The Paleontological Society 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Amard, B. 1992. Ultrastructure of Chuaria (Walcott) Vidal and Ford (Acritarcha) from the Late Proterozoic Pendjari Formation, Benin and Burkina Faso, West Africa. Precambrian Research, 57:121133.CrossRefGoogle Scholar
Amard, B. 1997. Chuaria pendjariensis n. sp., acritarche du bassin des Volta, Bénin et Burkina-Faso, Afrique de l'Ouest: un taxon nouveau du Cambrien inférieur. Comptes Rendus de l'Académie des Sciences Paris, 324(IIa):477483.Google Scholar
Amard, B., and Affaton, P. 1984. Découverte de Chuaria circularis (Acritarche) dans le bassin des Volta (Haute Volta et Bénin, Afrique de l'Ouest): Age protérozoïque terminal de la formation de la Pendjari et de la tillite sous-jacente. Comptes Rendus de l'Académie des Sciences Paris, 299(II):975980.Google Scholar
Boucot, A. J. 1983. Does evolution take place in an ecological vacuum? II. Journal of Paleontology, 57:130.Google Scholar
Brett, C. E., and Baird, G. C. 1995. Coordinated stasis and evolutionary ecology of Silurian to Middle Devonian faunas in the Appalachian Basin, p. 285315. In Erwin, D. H. and Anstey, R. L. (eds.), New Approaches to Speciation in the Fossil Record. Columbia University Press, New York,Google Scholar
Brett, C. E., Ivany, L. C., and Schopf, K. M. 1996. Coordinated stasis: an overview. Palaeogeography, Palaeoclimatology, Palaeoecology, 127:120.CrossRefGoogle Scholar
Buick, R. 1990. Microfossil recognition in Archean rocks: an appraisal of spheroids and filaments from a 3500 m.y. old chert-barite unit at North Pole, Western Australia. Palaios, 5:441459.CrossRefGoogle Scholar
Buick, R., Des Marais, D. J., and Knoll, A. H. 1995. Stable isotopic compositions of carbonates from the Mesoproterozoic Bangemall Group, northwestern Australia. Chemical Geology, 123:153171.CrossRefGoogle ScholarPubMed
Butterfield, N. J., and Chandler, F. W. 1992. Palaeoenvironmental distribution of Proterozoic microfossils, with an example from the Agu Bay Formation, Baffin Island. Palaeontology, 35:943957.Google Scholar
Butterfield, N. J., Knoll, A. H., and Swett, K. 1988. Exceptional preservation of fossils in an upper Proterozoic shale. Nature, 334:424427.CrossRefGoogle Scholar
Butterfield, N. J., Knoll, A. H., and Swett, K. 1994. Paleobiology of the Neoproterozoic Svanbergfjellet Formation, Spitsbergen. Fossils and Strata, 34, 84 p.Google Scholar
Chuck, R. G. 1984. Sedimentary and tectonic development of the Bangemall Basin and implications for mineral exploration. Western Australian Mineral and Petroleum Research Institute Report, 6, 84 p.Google Scholar
Compston, W., and Arriens, P. A. 1968. The Precambrian geochronology of Australia. Canadian Journal of Earth Sciences, 5:561583.CrossRefGoogle Scholar
Copeland, J. J. 1936. Yellowstone thermal myxophyceae. Annals of the New York Academy of Science, 36, 232 p.CrossRefGoogle Scholar
Des Marais, D. J., Strauss, H., Summons, R. E., and Hayes, J. M. 1992. Carbon isotope evidence for the stepwise oxidation of the Proterozoic environment. Nature, 359:605609.CrossRefGoogle ScholarPubMed
Doolittle, R. F., Feng, D., Tsang, S., Cho, G., and Little, E. 1996. Determining divergence times of the major kingdoms of living organisms with a protein clock. Science, 271:470477.CrossRefGoogle ScholarPubMed
Eisenack, A. 1958. Tasmanites Newton 1875 und Leiosphaeridia n.g. als Gattungen der Hystrichosphaeridia. Palaeontographica A, 110:119.Google Scholar
Evitt, W. R. 1963. A discussion and proposals concerning fossil dinoflagellates, hystrichospheres and acritarchs, II. Proceedings of the National Academy of Sciences USA, 49:298302.CrossRefGoogle ScholarPubMed
Fairchild, I. J., Knoll, A. H., and Swett, K. 1991. Coastal lithofacies and biofacies associated with syndepositional dolomitization and silicification (Draken Formation, Upper Riphean, Svalbard). Precambrian Research, 53:165197.CrossRefGoogle ScholarPubMed
Gee, R. D., De Laeter, J. R., and Drake, J. R. 1976. The geology and geochronology of altered rhyolite from the lower part of the Bangemall Group near Tangadee, Western Australia. Geological Survey of Western Australia Annual Report, 1975:112117.Google Scholar
Geitler, L. 1925. Cyanophyceae, p. 1450. In Pascher, A. (ed.), Die Süsswasserflora Deutschlands, Österreichs, und der Schweiz, Volume 12 (Cyanophyceae, Cyanochloridinae, Chlorobacteriaceae). Gustav Fischer, Jena.Google Scholar
German, T. N. 1974. Nakhodki massovykh skoplenij trikhomov v rifee, p. 610. In Timofeev, B. V. (ed.), Mikrofitofossilii Proterozoya i Rannego Paleozoya SSSR. Nauka, Leningrad.Google Scholar
German, T. N. 1981. Filamentous microorganisms in the Lakhanda Formation on the Maya River. Paleontological Journal, 1981(2):100107.Google Scholar
German, T. N. 1985. Nitchatie vodorosli venda, p. 146153. In Sokolov, B. S. and Ivanovski, A. B. (eds.) Vendskaya Sistema, vol. 1. Nauka, Moscow.Google Scholar
German, T. N. 1989. Sistematicheskoe opisanie mikrofossilii, p. 34151. In Jankauskas, T. (ed.) Mikrofossilii dokembriya SSSR. Nauka, Leningrad.Google Scholar
Golovenok, V. K., and Belova, M. Yu. 1984. Riphean microbiota in cherts of the Billyakh Group on the Anabar uplift. Paleontological Journal, 1984(4):2030.Google Scholar
Golub, I. N. 1979. Novaya gruppa problematicheskikh mikroobrazovanij v vendskikh otlozheniyakh Orshanskoj vpadiny (Russkaya platforma), p. 147155. In Sokolov, B. S. (ed.), Paleontologiya dokembriya i rannego kembriya. Nauka, Leningrad.Google Scholar
Golubic, S., Sergeev, V. N., and Knoll, A. H. 1995. Mesoproterozoic Archaeoellipsoides: akinetes of heterocystous cyanobacteria. Lethaia, 28:285298.CrossRefGoogle ScholarPubMed
Green, J. W., Knoll, A. H., Golubic, S., and Swett, K. 1987. Paleobiology of distinctive benthic microfossils from the Upper Proterozoic Limestone-Dolomite “Series”, central East Greenland. American Journal of Botany, 62:835852.Google Scholar
Grey, K. 1982. Aspects of Proterozoic stromatolite biostratigraphy in Western Australia. Precambrian Research, 18:347365.CrossRefGoogle Scholar
Grey, K. 1985. Stromatolites and other, organic remains in the Bangemall Basin. Geological Survey of Western Australia Bulletin, 128:221241.Google Scholar
Grey, K., and Williams, I. R. 1990. Problematic bedding-plane markings from the Middle Proterozoic Manganese Subgroup, Bangemall Basin, Western Australia. Precambrian Research, 46:307327.CrossRefGoogle Scholar
Han, T.-M. and Runnegar, B. 1992. Megascopic eukaryotic algae from the 2.1-billion-year-old Negaunee Iron-Formation, Michigan. Science, 257:232235.CrossRefGoogle ScholarPubMed
Hofmann, H. J. 1976. Precambrian microflora, Belcher Islands, Canada: significance and systematics. Journal of Paleontology, 50:10401073.Google Scholar
Hofmann, H. J. 1992. Proterozoic carbonaceous films, p. 349357. In Schopf, J. W. and Klein, C. (eds.), The Proterozoic Biosphere: a Multidisciplinary Study. Cambridge University Press, Cambridge.Google Scholar
Hofmann, H. J. 1994. Proterozoic carbonaceous compressions (“metaphytes” and “worms”), p. 342357. In Bengtson, S. (ed.), Early Life on Earth. Columbia University Press, New York.Google Scholar
Hofmann, H. J., and Aitken, J. D. 1979. Precambrian biota from the Little Dal Group, Mackenzie Mountains, northwestern Canada. Canadian Journal of Earth Sciences, 16:150166.CrossRefGoogle Scholar
Hofmann, H. J., and Chen, J. B. 1981. Carbonaceous megafossils from the Precambrian (1800 Ma) near Jixian, northern China. Canadian Journal of Earth Sciences, 18:443447.CrossRefGoogle Scholar
Hofmann, H. J., and Jackson, G. D. 1991. Shelf-facies microfossils from the Uluksan Group (Proterozoic Bylot Supergroup), Baffin Island, Canada. Journal of Palaeontology, 65:361382.CrossRefGoogle Scholar
Hofmann, H. J., and Jackson, G. D. 1994. Shale-facies microfossils from the Proterozoic Bylot Supergroup, Baffin Island, Canada. Paleontological Society Memoir, 37, 39 p.Google Scholar
Horodyski, R. J. 1980. Middle Proterozoic shale-facies biota from the lower Belt Supergroup, Little Belt Mountains, Montana. Journal of Paleontology, 54:649663.Google Scholar
Horodyski, R. J., and Donaldson, J. A. 1980. Microfossils from the Middle Proterozoic Dismal Lakes Group, Arctic Canada. Precambrian Research, 11:125159.CrossRefGoogle Scholar
Horodyski, R. J., and Donaldson, J. A. 1983. Distribution and significance of microfossils in cherts of the Middle Proterozoic Dismal Lakes Group, Distict of Mackenzie, Northwest Territories, Canada. Journal of Paleontology, 57:271288.Google Scholar
Horodyski, R. J., Donaldson, J. A., and Kerans, C. 1980. A new shale-facies microbiota from the Middle Proterozoic Dismal Lakes Group, District of Mackenzie, Northwest Territories, Canada. Canadian Journal of Earth Sciences, 17:11661173.CrossRefGoogle Scholar
Jankauskas, T. V. 1982. Mikrofossilii Rifeya Yuzhnogo Urala, p. 84120. In Keller, B. M. (ed.), Stratotip Rifeya: Paleontologiya, Paleomagnetizm. Trudy Geologicheskii Institut Akademii Nauk SSSR, 368:84–120.Google Scholar
Jankauskas, T. V. 1989. Mikrofossilii dokembriya SSSR. Nauka, Leningrad, 188 p.Google Scholar
Jux, U. 1977. Über die Wandstrukturen sphaeromorpher Acritarchen: Tasmanites Newton, Tapajonites Sommer & Van Boekel, Chuaria Walcott. Palaeontographica B, 160:116.Google Scholar
Kah, L. C., and Knoll, A. H. 1996. Microbenthic distribution of Proterozoic tidal flats: environmental and taphonomic considerations. Geology, 24:7982.2.3.CO;2>CrossRefGoogle ScholarPubMed
Kirchner, O. 1898. Schizophyceae, p. 492. In Engler, A. and Prantl, K. (eds.), Die natürlichen Pflanzenfamilien, Volume I, IA.Google Scholar
Knoll, A. H. 1982. Microfossils from the late Precambrian Draken Conglomerate, Ny Friesland, Svalbard. Journal of Paleontology, 56:755790.Google Scholar
Knoll, A. H. 1984. Microbiotas of the late Precambrian Hunnberg Formation, Nordaustlandet, Svalbard. Journal of Paleontology, 58:131162.Google Scholar
Knoll, A. H. 1992a. The early evolution of eukaryotes: a geological perspective. Science, 256:622627.CrossRefGoogle ScholarPubMed
Knoll, A. H. 1992b. Vendian microfossils in metasedimentary cherts of the Scotia Group, Prins Karls Forland, Svalbard. Palaeontology, 35:467496.Google ScholarPubMed
Knoll, A. H. 1996. Archean and Proterozoic paleontology, p. 5180. In Jansonius, J. and McGregor, D. C. (eds.), Palynology: Principles and Applications. American Association of Stratigraphic Palynologists Foundation, vol. 1.Google Scholar
Knoll, A. H., and Golubic, S. 1979. Anatomy and taphonomy of a Precambrian algal stromatolite. Precambrian Research, 10:115151.CrossRefGoogle Scholar
Knoll, A. H., and Golubic, S. 1992. Proterozoic and living cyanobacteria, p. 450462. In Schidlowski, M. (ed.), Early Organic Evolution: Implications for Mineral and Energy Resources. Springer-Verlag, Berlin.CrossRefGoogle Scholar
Knoll, A. H., and Holland, H. D. 1995. Oxygen and Proterozoic evolution: an update, p. 117. In Stanley, S. (ed.) Effects of Past Global Change on Life. NAS Press, Washington.Google Scholar
Knoll, A. H., and Sergeev, V. N. 1995. Taphonomic and evolutionary changes across the Mesoproterozoic-Neoproterozoic transition. Neues Jahrbuch für Geologische und Paläontologie Abhandlungen, 195:289302.CrossRefGoogle ScholarPubMed
Knoll, A. H., Barghoorn, E. S., and Golubic, S. 1975. Palaeopleurocapsa wopfnerii gen. et sp. nov.: a late Precambrian alga and its modern counterpart. Proceedings of the National Academy of Sciences U.S.A, 72:24882492.CrossRefGoogle Scholar
Knoll, A. H., Kaufman, A. J., and Semikhatov, M. A. 1995. The carbonisotopic composition of Proterozoic carbonates: Riphean successions from northwestern Siberia (Anabar Massif, Turukhansk Uplift). American Journal of Science, 295:823850.CrossRefGoogle ScholarPubMed
Knoll, A. H., Swett, K., and Mark, J. 1991. Paleobiology of a Neoproterozoic tidal flat/lagoonal complex: the Draken Conglomerate Formation, Spitsbergen. Journal of Paleontology, 65:531570.CrossRefGoogle ScholarPubMed
Kumar, S., and Srivastava, P. 1995. Microfossils from the Kheinjua Formation, Mesoproterozoic Semri Group, Newari area, central India. Precambrian Research, 74:91117.CrossRefGoogle Scholar
Maithy, P. K. 1975. Micro-organisms from the Bushimay System (late Precambrian) of Kanshi, Zaire. The Palaeobotanist, 22:133147.Google Scholar
Mandal, J., Maithy, P. K., Barman, G., and Verma, K. K. 1984. Microbiota from the Kushalgarh Formation, Delhi Supergroup, India. The Palaeobotanist, 31:191199.Google Scholar
Marshall, A. E. 1968. Geological studies of the Proterozoic Bangemall Group, N.W. Australia. Unpublished Ph.D. dissertation, Princeton University.Google Scholar
Mendelson, C. V., and Schopf, J. W. 1982. Proterozoic microfossils from the Sukhaya Tunguska, Shorikha, and Yudoma Formations of the Siberian Platform, USSR. Journal of Paleontology, 56:4283.Google Scholar
Mendelson, C. V., and Schopf, J. W. 1992. Proterozoic and Early Cambrian acritarchs, p. 219232. In Schopf, J. W. and Klein, C. (eds.), The Proterozoic Biosphere: a Multidisciplinary Study. Cambridge University Press, Cambridge.Google Scholar
Muhling, P. C., and Brakel, A. T. 1985. Geology of the Bangemall Group: the evolution of an intracratonic Proterozoic basin. Geological Survey of Western Australia Bulletin, 128:1219.Google Scholar
Muir, M. D. 1974. Microfossils from the Middle Precambrian McArthur Group, Northern Territory, Australia. Origins of Life, 5:105118.CrossRefGoogle ScholarPubMed
Muir, M. D. 1976. Proterozoic microfossils from the Amelia Dolomite, McArthur Basin, Northern Territory. Alcheringa, 1:143158.CrossRefGoogle Scholar
Muir, M. D. 1983. Proterozoic microfossils from the Mara Dolomite Member, Emmerugga Dolomite, McArthur Group, from the Northern Territory, Australia. Botanical Journal of the Linnean Society, 86:118.CrossRefGoogle Scholar
Nägeli, C. 1849. Gattungen Einzellinger Algen, Physiologisch und Systematisch Bearbeitet. F. Schulthess, Zürich, 139 p.CrossRefGoogle Scholar
Naumova, S. N. 1949. Spory nizhnedokembriya. Izvestiya Akademii Nauk SSSR Seriya Geologicheskaya 1949, 4:4956.Google Scholar
Nelson, D. R. 1995. Compilation of SHRIMP U-Pb zircon data, 1994. Geological Survey of Western Australia Record 1995/3, 244 p.Google Scholar
Nyberg, A. V., and Schopf, J. W. 1981. Microfossils in stromatolitic cherts from the Proterozoic Allamoore Formation of west Texas. Precambrian Research, 16:129141.CrossRefGoogle Scholar
Oehler, D. Z. 1978. Microflora of the middle Proterozoic Balbirini Dolomite (McArthur Group) of Australia. Alcheringa, 2:269310.CrossRefGoogle Scholar
Oehler, J. H. 1977. Microflora of the HYC Pyritic Shale Member of the Barney Creek Formation (McArthur Group), Middle Proterozoic of northern Australia. Alcheringa, 1:315349.CrossRefGoogle Scholar
Peat, C. J. 1984. Precambrian microfossils from the Longmyndian of Shropshire. Proceedings of the Geological Association, 95:1722.CrossRefGoogle Scholar
Peat, C. J., Muir, M. D., Plumb, K. A., McKirdy, D. M., and Norvick, M. S. 1978. Proterozoic microfossils from the Roper Group, Northern Territory, Australia. BMR Journal of Australian Geology and Geophysics, 3:117.Google Scholar
Petrov, P. Yu., Semikhatov, M. A., and Sergeev, V. N. 1995. Development of the silicified carbonate platform and distribution of silicified microfossils: the Sukhaya Tunguska Formation, Turukhansk Uplift, Siberia. Stratigraphy and Geological Correlation, 3:602620.Google Scholar
Schopf, J. W. 1968. Microflora of the Bitter Springs Formation, Late Precambrian, Central Australia. Journal of Paleontology, 42:651688.Google Scholar
Schopf, J. W. 1992a. Proterozoic prokaryotes: affinities, geologic distribution and evolutionary trends, p.195218. In Schopf, J. W. and Klein, C. (eds.), The Proterozoic Biosphere: a Multidisciplinary Study. Cambridge University Press, Cambridge.CrossRefGoogle Scholar
Schopf, J. W. 1992b. Evolution of the Proterozoic biosphere: benchmarks, tempo and mode, p. 585600. In Schopf, J. W. and Klein, C. (eds.), The Proterozoic Biosphere: a Multidisciplinary Study. Cambridge University Press, Cambridge.CrossRefGoogle Scholar
Schopf, J. W. 1994. Disparate rates, differing fates: tempo and mode of evolution changed from the Precambrian to the Phanerozoic. Proceedings of the National Academy of Science U.S.A., 91:67356742.CrossRefGoogle Scholar
Schopf, J. W., and Blacic, B. M. 1971. New microorganisms from the Bitter Springs Formation (Late Precambrian) of the north-central Amadeus Basin, central Australia. Journal of Paleontology, 45:925960.Google Scholar
Sergeev, V. N. 1993. Silicified Riphean microfossils from the Anabar uplift. Stratigraphy and Geological Correlation, 1:264278.Google Scholar
Sergeev, V. N. 1994. Microfossils in cherts from the Middle Riphean (Mesoproterozoic) Avzyan Formation, southern Ural Mountains, Russian Federation. Precambrian Research, 65:231254.CrossRefGoogle ScholarPubMed
Sergeev, V. N., Knoll, A. H., and Grotzinger, J. P. 1995. Paleobiology of the Mesoproterozoic Billyakh Group, Anabar Uplift, northern Siberia. Paleontological Society Memoir, 39, 37 p.Google Scholar
Sergeev, V. N., Knoll, A. H., Grotzinger, J. P., and Petrov, P. Yu. 1997. Paleobiology of the Mesoproterozoic-Neoproterozoic transition: the Sukhaya Tunguska Formation, Turukhansk Uplift, Siberia. Precambrian Research, 85:201239.CrossRefGoogle ScholarPubMed
Sergeev, V. N., Knoll, A. H., Grotzinger, J. P., Kolosova, S. P., and Kolosov, P. N. 1994. Microfossils in cherts from the Mesoproterozoic (Middle Riphean) Debengda Formation, the Olenek Uplift, northeastern Siberia. Stratigraphy and Geological Correlation, 2:1933.Google ScholarPubMed
Stanier, R. Y., Sistrom, W. R., Hansen, T. A., Whitton, B. A., Castenholz, R. W., Pfenning, N., Gorlenko, V. N., Kondratieva, E. N., Eimhjellen, K. E., Whittenbury, R., Gherna, R. L., and Trüper, H. G. 1978. Proposal to place nomenclature of the Cyanobacteria (blue-green algae) under the rules of the International Code of Nomenclature of Bacteria. International Journal of Systematic Bacteriology, 28:335336.Google Scholar
Steiner, M. 1994. Die neoproterozoischen Megaalgen Südchinas. Berliner Geowissenschaftliche Abhandlungen, E15:1146.Google Scholar
Strauss, H., and Moore, T. B. 1992. Abundances and isotopic compositions of carbon and sulfur species in whole rock and kerogen samples, p. 711798. In Schopf, J. W. and Klein, C. (eds.), The Proterozoic Biosphere: a Multidisciplinary Study. Cambridge University Press, Cambridge.Google Scholar
Summons, R. E., and Walter, M. R. 1990. Molecular fossils and microfossils of prokaryotes and protists from Proterozoic sediments. American Journal of Science, 290A:212244.Google Scholar
Thuret, G. 1875. Essai de classification de Nostochinées. Annales Sciences Naturelle (Botanique), 6:372382.Google Scholar
Timofeev, B. V. 1966. Mikropaleofitologicheskoe Issledovanie Drevnikh Svit. Nauka, Moscow, 147 p.Google Scholar
Veis, A. F., and Petrov, P. Yu. 1994. The main peculiarities of the environmental distribution of microfossils in the Riphean basins of Siberia. Stratigraphy and Geological Correlation, 2:397425.Google Scholar
Veis, A. F., and Semikhatov, M. A. 1989. Nizhnerifeiskaia Omakhtinskaia assotsiatsiia microfossilii vostochnoi Sibiri: sostav i usloviia formirovaniia. Izvestiya Akademii Nauk SSSR, Seriia Geologicheskaia, 5:3654.Google Scholar
Veis, A. F., and Vorobyeva, N. G. 1992. Mikrofossilii rifeya i venda Anabarskogo massiva. Izvestiya RAN, Seriia Geologicheskaia, 1:114130.Google Scholar
Walcott, C. D. 1899. Pre-Cambrian fossiliferous formations. Geological Society of America Bulletin, 10:199244.CrossRefGoogle Scholar
Walter, M. R. 1972. Stromatolites and the biostratigraphy of the Australian Precambrian and Cambrian. Special Papers in Palaeontology, 11, 190 p.Google Scholar
Wettstein, R. 1924. Handbuch der Systematischen Botanik, Band I, Franz Deuticke, Leipzig, 1017 p.Google Scholar
Williams, I. R. 1990. Bangemall Basin. Geological Survey of Western Australia Memoir, 3:308329.Google Scholar
Woese, C. R., and Fox, G. 1977. Phylogenetic structure of the prokaryotic domain. Proceedings of the National Academy of Sciences U.S.A., 74:50885090.CrossRefGoogle ScholarPubMed
Woese, C. R., Kandler, O., and Wheelis, M. L. 1990. Towards a natural system of organisms: proposal for the domains Archaea, Bacteria, and Eucarya. Proceedings of the National Academy of Sciences U.S.A., 87:45764579.CrossRefGoogle ScholarPubMed
Xiao, S., Knoll, A. H., Kaufman, A. J., Yin, L., and Zhang, Y. 1997. Neoproterozoic fossils in Mesoproterozoic rocks? A stratigraphic conundrum from the North China Platform. Precambrian Research, 84:197220.CrossRefGoogle Scholar
Yakschin, M. S. 1991. Vodoroslevaya mikrobiota nizhnego rifeya Anabarskogo podnyatia. Nauka, Sibirskoe Otdelenie, Novosibirsk, 61 p.Google Scholar
Zhang, P., and Gu, S. 1986. Microfossils from the Wumishan Formation of the Jixian System in the Ming Tombs, Beijing, China. Acta Geologica Sinica, 60:1322.Google Scholar
Zhang, P., Zhu, M., and Song, W. 1989. Middle Proterozoic (1200-1400 Ma) microfossils from the Western Hills near Beijing, China. Canadian Journal of Earth Sciences, 26:322328.Google Scholar
Zhang, Y. 1981. Proterozoic stromatolite microfloras of the Gaoyuzhuang Formation (early Sinian: Riphean), Hebei, China. Journal of Paleontology, 55:485506.Google Scholar
Zhang, Y. 1985. Stromatolitic microbiota from the middle Proterozoic Wumishan Formation (Jixian Group) of the Ming Tombs, Beijing, China. Precambrian Research, 30:277302.Google Scholar
Zhang, Z. 1986. Clastic facies microfossils from the Chuanlingguo Formation (1800 Ma) near Jixian, North China. Journal of Micropaeontology, 5:916.Google Scholar