Hostname: page-component-8448b6f56d-42gr6 Total loading time: 0 Render date: 2024-04-23T09:37:38.612Z Has data issue: false hasContentIssue false

Evolution of the Luminescence Spectrum During the Dry and Steam Oxidation of SiGe Films

Published online by Cambridge University Press:  01 February 2011

A. Rodríguez
Affiliation:
Dpto. Tecnología Electrónica, E.T.S.I.T., Universidad Politécnica de Madrid, Madrid, Spain.
J. Sangrador
Affiliation:
Dpto. Tecnología Electrónica, E.T.S.I.T., Universidad Politécnica de Madrid, Madrid, Spain.
T. Rodríguez
Affiliation:
Dpto. Tecnología Electrónica, E.T.S.I.T., Universidad Politécnica de Madrid, Madrid, Spain.
A. C. Prieto
Affiliation:
Dpto. Física de la Materia Condensada, E.T.S.I.I., U. de Valladolid, Valladolid, Spain.
M. Avella
Affiliation:
Dpto. Física de la Materia Condensada, E.T.S.I.I., U. de Valladolid, Valladolid, Spain.
J. Jiménez
Affiliation:
Dpto. Física de la Materia Condensada, E.T.S.I.I., U. de Valladolid, Valladolid, Spain.
Get access

Abstract

The luminescence emission arising from SiGe layers oxidized in dry or wet atmospheres has been studied and the results obtained in both cases have been compared. Additional characterization of the samples by Raman and FTIR spectroscopies, which give information on the remaining SiGe layer and on the composition of the growing oxides respectively, have allowed the luminescence and the structural features of the samples at each stage of the oxidation processes to be correlated. SiGe layers of two different thickness have been used in order to clearly establish the origin of the different emissions, eliminating the contribution of the oxide and linking them to the presence of nanoparticles.

Type
Research Article
Copyright
Copyright © Materials Research Society 2005

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Pavesi, L.. Nature 408, 440 (2000).Google Scholar
2. Xie, Y. X., Wee, A. T. S., Huan, C. H. A., Sun, W. X., Shen, Z. X., Chua, S. J.. Mater. Sci. Eng. B 107, 8 (2004).Google Scholar
3. Kilpatrick, S. J., Jaccodine, R. J., Thompson, P. E.. J. Appl. Phys. 93, 4896 (2003).Google Scholar
4. Li, P. W., Liao, W. M., Lin, S. W., Chen, P. S., Lu, S. C., Tsai, M. J.. Appl. Phys. Lett. 83, 4628 (2003).Google Scholar
5. Torschynska, T. V., Aguilar-Hernández, J., Schacht-Hernández, L., Polupan, G., Goldstein, Y., Many, A., Jedrzejewski, J., Kolobov, A.. Microelectron. Eng. 66, 83 (2003).Google Scholar
6. Kanemitsu, Y., Uto, H., Masumoto, Y., Maeda, Y.. Appl. Phys. Lett. 61, 2187 (1992).Google Scholar
7. Olivares, J., Sangrador, J., Rodríguez, A., Rodríguez, T.. J. Electrochem. Soc. 148, C685 (2001).Google Scholar
8. Cuadras, A., Arbiol, J., Garrido, B., Morante, J. R., Rodríguez, A., Rodríguez, T.. These Proceedings.Google Scholar
9. Oku, T., Nakayama, T., Kuno, M., Nozue, Y., Wallenberg, L. R., Niihara, K., Suganama, K.. Mater. Sci. Eng. B 74, 242 (2000).Google Scholar
10. Skuja, L.. Phys. Stat. Solidi A 114, 731 (1989).Google Scholar
11. Fitting, H. J., Barfels, T., Trukhin, A. N., Schmidtt, B.. J. Non-Cryst. Solids 279, 52 (2001).Google Scholar
12. Rebohle, L., Von Borany, J., Frob, H., Gebel, T., Helm, M., Skorupa, W.. Nucl. Instr. Meth. Phys. Res. B 188, 28 (2002).Google Scholar