Hostname: page-component-76fb5796d-vvkck Total loading time: 0 Render date: 2024-04-25T13:50:43.468Z Has data issue: false hasContentIssue false

Near-Field Mass Transfer in Geologic Disposal Systems: a Review

Published online by Cambridge University Press:  28 February 2011

T. H. Pigford
Affiliation:
Department of Nuclear Engineering and Lawrence Berkeley Laboratory, University of California, Berkeley, CA 94720
P. L. Chambré
Affiliation:
Department of Nuclear Engineering and Lawrence Berkeley Laboratory, University of California, Berkeley, CA 94720
Get access

Abstract

A primary purpose of performance assessment of geologic repositories for radioactive waste is to predict the extent to which radioactive species are released from the waste solids and are transported through geologic media to the environment. Reliable quantitative predictions must be made of rates of release of radionuclides from the waste into the rock, transport through the geologic media, cumulative release to the accessible environment, and maximum concentrations in ground water and surface water. Here we review theoretical approaches to making the predictions of near-field release from buried waste solids, which provide the source terms for far-field release. The extent to which approaches and issues depend on the rock media and on regulatory criteria is discussed.

Type
Research Article
Copyright
Copyright © Materials Research Society 1988

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. U.S. Nuclear Regulatory Commission, “Disposal of High-Level Radioactive Wastes in Geologic Repositories - Technical Criteria,” 10 CFR 60, Fed. Reg., 48, 120, 18194, 1983.Google Scholar
2. Neretnieks, I., “Transport of Oxidants and Radionuclides Through a Clay Barrier,” Report KBS TR-79, February 1978.Google Scholar
3. Pigford, T. H., Blomeke, J. O., Brekke, T. L., Cowan, G. A., Falconer, W. E., Grant, N. J., Johnson, J. R., Matusek, J. M., Parizek, R. R., Pigford, R. L., White, D. E., A Study of the Isolation System for Geologic Disposal of Radioactive Wastes, National Academy Press, Washington, D.C., April 1983.Google Scholar
4. Chambré, P. L., Pigford, T. H., Zavoshy, S., “Solubility-Limited Dissolution Rate in Groundwater,” Trans. Amer. Nucl. Soc., 43, 153 (1982).Google Scholar
5. Chambré, P. L., Pigford, T. H., Sato, Y., Fujita, A., Lung, H., Zavoshy, S. J., Kobayashi, R., Analytical Performance Models, Lawrence Berkeley Laboratory Report LBL-14842, 1982.Google Scholar
6. Bensky, M. S. and Oliver, D. L., “Transient Diffusional Release From Waste Packages in a Repository in Basalt”, Proceedings of the Materials Research Society, Scientific Basis for Nuclear Waste Management IX, 1986.Google Scholar
7. Kerrisk, J. F., “Solubility Limits on Radionuclide Dissolution,” Proceedings of the Materials Research Society, Scientific Basis for Nuclear Waste Management VIII, Jantzen, C. M., Stone, J. A., Ewing, R. C., eds., 44, 237–244, 1985.Google Scholar
8. Kerrisk, J. F., “Solubility Limits on Radionuclide Dissolution At a Yucca Mountain Repository,” Report LA-9995-MS, May 1984.Google Scholar
9. Chambré, P. L., Hwang, Y., Lee, W. W.-L. and Pigford, T. H., “Release Rates from Waste Packages in a Salt Repository,” Trans. Am. Nucl. Soc., 55, 131132 (1987).Google Scholar
10. Liebetrau, A. M., Apted, M. J., Engel, D. W., Altenhofen, M. K., Reid, C. R., M.Strachan, D., Erikson, R. L., and Johnson, K. I., “The Analytical Repository Source-Term (AREST) Model: Description and Documentatuion,” Pacific Northwest Laboratory Report PNL-6346, 1987.Google Scholar
11. Garisto, N. C. and LeNeveu, D. M., “A Vault Model for the Assessment of Used Fuel Disposal in Canada,” Proceedings of the Materials Research Society, Scientific Basis for Nuclear Waste Management XI, Apted, M. J. and Westerman, R. E., eds., 1988.Google Scholar
12. Hopkirk, R. J., Gilby, D. J. and Wagner, W. H., “Modelling of Solute Transport in the Near Field of a High Level Waste Repository,” Report 85–26, Polydynamics Ltd, Zurich, 1986.Google Scholar
13. Kim, C. L., Chambré, P. L and Pigford, T. H., “Mass-Transfer-Limited Release of a Soluble Waste Species,” Lawrence Berkeley Laboratory Report LBL-20899, June 1986.Google Scholar
14. Pigford, T. H., “Can Cs-137 be Dismissed Under the NRC Release-Rate Criterion for Geologic Repositories,” Report UCB-NE-4088, July 1986.Google Scholar
15. Scott, J. I. and Koplik, C. M., “Analytic Models for Assessing the Performance of Engineered Barriers in a Basalt Repository,” Proceedings of the Materials Research Society, Scientific Basis for Nuclear Waste Management VII, McVay, G. L., ed., 26, 1077–1084, 1984.CrossRefGoogle Scholar
16. Ross, B., “Models for Calculating Dissolution Rates of High-Level Waste,” Nuclear Safety, 28, 362373, September 1987.Google Scholar
17. Zavoshy, S. J., Chambré, P. L., and Pigford, T. H., “Mass Transfer in a Geologic Environment,” Proceedings of the Materials Research Society, Scientific Basis for Nuclear Waste Management VIII, Jantzen, C. M., Stone, J. A., Ewing, R. C., eds., 44, 311–322, 1985.Google Scholar
18. Pederson, L. R., Buckwalter, C. Q. and McVay, G. L., “The Effect of Surface Area to Solution Volume on Waste Glass Leaching,” Nucl. Tech., 62, 151 (1983).Google Scholar
19. van Luik, A. E., Apted, M. J., Bailey, W. J., Haberman, J. H., Shade, J. S., Guenther, R. E., Serne, R. J., Gilbert, E. R., Peters, R., Williford, R. E., “Spent Nuclear Fuel as a Waste Form for Geologic Disposal: Assessment and Recommendations on Data and Modeling Needs,” Report PNL-6329, 1987.Google Scholar
20. Chambré, P. L., Kang, C. H., Lee, W. W.-L. and Pigford, T. H., “The Role of Chemical Reaction in Waste-Form Performance,” Proceedings of the Materials Research Society, Scientific Basis for Nuclear Waste Management XI, Apted, M. J. and Westerman, R. E., eds., 1988.Google Scholar
21. Rai, D. and Strickert, R. G., “Maximum Concentrations of Actinides in Geologic Media,” Trans. Amer. Nuc. Soc., 33, 185 (1980).Google Scholar
22. Chambré, P. L. and Pigford, T. H., “Prediction of Waste Performance in a Geologic Repository,” Proceedings of the Materials Research Society, Scientific Basis for Nuclear Waste Management VIII, McVay, G. L., ed., 26, 985–1008, 1984.Google Scholar
23. Sherwood, T. K., Pigford, R. L., and Wilke, C. R., Mass Transfer, 129137, McGraw-Hill, New York, 1975.Google Scholar
24. Pfannkuch, H. O., “Contribution a l'etude des deplacement de fluides miscible dans un milieu poreux,” Rev. Inst. Fr. Petrol., 18(2), 215 (1982).Google Scholar
25. Kang, C. H., Chambré, P. L., Pigford, T. H., “One-Dimensional Advective Transport with Variable Dispersion,” Trans. Am. Nucl. Soc., 50, 140141 (1985).Google Scholar
26. U.S. Department of Energy, “Environmental Assessment: Reference Repository Location, Hanford Site, Washington,” Report DOE/RW-0070, 2, 1986.Google Scholar
27. Pigford, T. H., Chambré, P. L., Albert, M., Foglia, M., Harada, M., Iwamoto, F., Kanki, T., Leung, D., Masuda, S., Muraoka, S., and Ting, D., Migration of Radionuclides Through Sorbing Media: Analytical Solutions - II, Lawrence Berkeley Laboratory Report LBL-11616, October 1980.Google Scholar
28. Kim, C. L., Chambré, P. L., Lee, W. W.-L. and Pigford, T. H., “Radionuclide Transport From an Array of Waste Packages in a Geologic Repository,” Trans. Am. Nucl. Soc., 54, 109 (1987).Google Scholar
29. Ahn, J., Chambré, P. L., Pigford, T. H. and Lee, W. W.-L., “Radionuclide Dispersion From Multiple Patch Sources Into a Rock Fracture,” Report LBL-23425 (1987).Google Scholar
30. Chambré, P. L., Williams, W. J., Kim, C. L. and Pigford, T. H., “Time-Temperature Dissolution and Radionuclide Transport,” Trans. Am. Nuc. Soc., 46, 131 (1984).Google Scholar
31. Pigford, T. H., Chambré, P. L., and Zavoshy, S., “Effect of Repository Heating on Dissolution of Glass Waste,” Trans. Am. Nucl. Soc., 44, 115 (1983).Google Scholar
32. Kim, C.-L., Chambré, P. L., Lee, W. W.-L., and Pigford, T. H., “Variable Temperature Effects on Release Rates of Readily Soluble Nuclides,” Lawrence Berkeley Laboratory Report UCB-NE-4115, 1987.Google Scholar
33. Neretnieks, I., “Migration model for the near field, Final Report,” KBS Report 82–24, (1982).Google Scholar
34. Garisto, N. C., Harvey, K. B., Garisto, F. and Johnson, L. M., “Source Term Models for the Assessment of Nuclear Fuel Waste,” Proc. Waste Management'86, 397401, Tucson, Arzona, 1986.Google Scholar
35. Chambré, P. L., Lung, H., and Pigford, T. H., “Time-Dependent Mass Transfer Through Backfill,” Trans. Amer. Nucl. Soc., 46, 132 (1984).Google Scholar
36. Chambré, P. L., Pigford, T. H., Lee, W. W.-L., Ahn, J., Kajiwara, S., Kim, C. L., Kimura, H., Lung, H., Williams, W. J., and Zavoshy, S. J., Mass Transfer and Transport in a Geologic Environment, Lawrence Berkeley Laboratory Report LBL-19430, 1985.Google Scholar
37. Nowak, E. J., “The Backfill Barrier as a Component in a Multiple Barrier Nuclear Waste Isolation System,” Sandia National Laboratories Report SAND 79–1109, October 1978.Google Scholar
38. Ahn, T. M., Czyscinski, K. S., Franz, E. M., Klamut, C. J., Lee, B. S., McIntyre, N. S., Swyler, K. J., Wilke, R. J., “Nuclear Waste Management Technical Support in the Development of Nuclear Waste Form Criteria for the NRC,” Report NUREG/CR-23333, Vol.4, 1982.Google Scholar
39. Ahn, T. M., Dayal, R., and Wilke, R. J., “Evaluation of Backfill as a Barrier to Radionuclide Migration in a High Level Waste Repository,” Appendix A in: Dayal, et al, “Nuclear Waste Management Technical Support in the Development of Nuclear Waste Form Criteria for the NRC,” Task 1, Waste Package Overview, Report NUREG/CR-2333, BNL-NUREG-51458, Vol. 1, 1982.Google Scholar
40. Chambré, P. L., Kang, C. H., Lee, W. W.-L. and Pigford, T. H., “Mass Transfer of Soluble Species Into Backfill and Rock,” Trans. Amer. Nue. Soc., 53, 136 (1986).Google Scholar
41. Lung, H. C., Chambré, P. L., Pigford, T. H., “Nuclide Migration in Backfill With a Nonlinear Sorption Isotherm,” Trans. Amer. Nucl. Soc., 45, 107 (1983).Google Scholar
42. Chambré, P. L., Kang, C. H. and Pigford, T. H., “Flow of Ground Water Around Buried Waste,” Trans. Am. Nuc. Soc. 52, 77 (1986).Google Scholar
43. Neretnieks, I., “Stationary Transport of Dissolved Species in the Backfill Surrounding a Waste Canister in Fissured Rock: Some Simple Analytical Solutions,” Nucl. Technol., 72, 194 (1986).Google Scholar
44. Neretnieks, I., “Source Term Modeling in the KBS-3 Study,” Proceedings of the Workshop on the Source Term for Radionuclide Migration from High-Level Waste or Spent Fuel Under Realistic Repository Conditions, Albuquerque, November 1984, pp. 41–68, Report SAND85–0380.Google Scholar
45. Kang, C. H., Chambré, P. L., Lee, W. W.-L. and Pigford, T. H., “Time-Dependent Nuclide Transport Through Backfill into a Fracture,” Trans. Am. Nucl. Soc., 55, 134136 (1987).Google Scholar
46. Ahn, J., Chambré, P. L. and Pigford, T. H., “Transient Diffusion From a Waste Solid Into Fractured Porous Rock,” Lawrence Berkeley Laboratory Report LBL-24576, 1987.Google Scholar
47. Harada, M., Chambré, P. L., Foglia, M., Higashi, K., Iwamoto, F., Leung, D., Pigford, T. H., and Ting, D., Migration of Radionuclides Through Sorbing Media: Analytical Solutions - I, Lawrence Berkeley Laboratory Report LBL-10500, February 1980.Google Scholar
48. Chambré, P. L., Lung, H. C. and Pigford, T. H., “Mass Transfer of a Radioactive Decay Chain Through Backfill,” Trans. Am. Nucl. Soc., 52, 7880 (1986).Google Scholar
49. Pigford, T. H. and Chambré, P. L., “Mass Transfer in a Salt Repository,” Lawrence Berkeley Laboratory Report LBL-19918, May 1985.Google Scholar
50. Brandshaug, T., “Estimate of Consolidation of Crushed Salt Around a Spent Fuel Waste Package,” RE/SPEC Report RSI-315, 1987.Google Scholar
51. McTigue, D. T., “Thermoelastic Response of Fluid-Saturated, Porous Rock,” J. Geophy. Res., 91, B9, 9533 (1986).Google Scholar
52. Hwang, Y., Chambré, P. L., Lee, W. W.-L. and Pigford, T. H., “Pressure-Induced Brine Migration in Consolidated Salt in a Repository,” Trans. Am. Nucl. Soc., 55, 132 (1987).Google Scholar
53. U.S. Department of Energy, “Environmental Assessment: Yucca Mountain Site, Nevada Research and Development Area, Nevada,” Report DOE/RW-0073, 2, 1986.Google Scholar