Hostname: page-component-8448b6f56d-c47g7 Total loading time: 0 Render date: 2024-04-23T14:03:58.062Z Has data issue: false hasContentIssue false

Clustering instabilities in sedimenting fluid–solid systems: critical assessment of kinetic-theory-based predictions using direct numerical simulation data

Published online by Cambridge University Press:  20 June 2017

William D. Fullmer
Affiliation:
Department of Chemical and Biological Engineering, University of Colorado, Boulder, CO 80309, USA
Guodong Liu
Affiliation:
School of Energy Science and Engineering, Harbin Institute of Technology, Harbin, 150001, China
Xiaolong Yin
Affiliation:
Petroleum Engineering Department, Colorado School of Mines, Golden, CO 80401, USA
Christine M. Hrenya*
Affiliation:
Department of Chemical and Biological Engineering, University of Colorado, Boulder, CO 80309, USA
*
Email address for correspondence: hrenya@colorado.edu

Abstract

In this work the quantitative and qualitative ability of a kinetic-theory-based two-fluid model (KT-TFM) is assessed in a state of fully periodic sedimentation (fluidization), with a focus on statistically steady, unstable (clustered) states. The accuracy of KT-TFM predictions is evaluated via direct comparison to direct numerical simulation (DNS) data. The KT-TFM and DNS results span a rather wide parameter space: mean-flow Reynolds numbers on the order of 1 and 10, mean solid volume fractions from 0.1 to 0.4, solid-to-fluid density ratios from 10 to 1000 and elastic and moderately inelastic (restitution coefficient of 0.9) conditions. Data from both KT-TFM and DNS display a rich variety of statistically steady yet unstable structures (clusters). Instantaneous snapshots of KT-TFM and DNS demonstrate remarkable qualitative agreement. This qualitative agreement is quantified by calculating the critical density ratio at which the structure transitions from a chaotic, dynamic state to a regular, plug-flow state, with good overall comparisons. Further quantitative assessments of mean and fluctuating velocities show good agreement at high density ratios but weaker agreement at intermediate to low density ratios depending on the mean-flow Reynolds numbers and solid fractions. Deviations of the KT-TFM results from the DNS data were traced to a breakdown in one of the underlying assumptions of the kinetic theory derivation: high thermal Stokes number. Surprisingly, however, even though the low Knudsen number assumption, also associated with the kinetic theory derivation, is violated throughout most of the parameter space, it does not seem to affect the good quantitative accuracy of KT-TFM simulations.

Type
Papers
Copyright
© 2017 Cambridge University Press 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Agrawal, K., Loezos, P. N., Syamlal, M. & Sundaresan, S. 2001 The role of meso-scale structures in rapid gas–solid flows. J. Fluid Mech. 445, 151185.CrossRefGoogle Scholar
Anderson, T. B. & Jackson, R. 1968 Fluid mechanical description of fluidized beds – stability of state of uniform fluidization. Ind. Engng Chem. Fundam. 7 (1), 1221.CrossRefGoogle Scholar
Beetstra, R., van der Hoef, M. A. & Kuipers, J. A. M. 2006 A lattice-Boltzmann simulation study of the drag coefficient of clusters of spheres. Comput. Fluids 35 (8–9), 966970.CrossRefGoogle Scholar
Beetstra, R., van der Hoef, M. A. & Kuipers, J. A. M. 2007 Drag force of intermediate Reynolds number flow past mono- and bidisperse arrays of spheres. AIChE J. 53, 489501.CrossRefGoogle Scholar
Benyahia, S. 2012 Fine-grid simulations of gas–solids flow in a circulating fluidized bed. AIChE J. 58 (11), 35893592.CrossRefGoogle Scholar
Brilliantov, N. & Pöschel, T. 2004 Kinetic Theory of Granular Gases. Oxford University Press.CrossRefGoogle Scholar
Capecelatro, J. & Desjardins, O. 2013 An Euler–Lagrange strategy for simulating particle-laden flows. J. Comput. Phys. 238, 131.CrossRefGoogle Scholar
Capecelatro, J., Desjardins, O. & Fox, R. O. 2015 On fluid–particle dynamics in fully developed cluster-induced turbulence. J. Fluid Mech. 780, 578635.CrossRefGoogle Scholar
Capecelatro, J., Desjardins, O. & Fox, R. O. 2016 Effect of domain size on fluid–particle statistics in homogeneous, gravity-driven, cluster-induced turbulence. Trans. ASME J. Fluids Engng 138 (4), 041301.CrossRefGoogle Scholar
Capecelatro, J., Pepiot, P. & Desjardins, O. 2014 Numerical characterization and modeling of particle clustering in wall-bounded vertical risers. Chem. Engng J. 245, 295310.CrossRefGoogle Scholar
Carnahan, N. F. & Starling, K. E. 1969 Equation of state for nonattracting rigid spheres. J. Chem. Phys. 51 (2), 635636.CrossRefGoogle Scholar
, Chapman, S. & Cowling, T. G. 1970 The Mathematical Theory of Non-Uniform Gases, 3rd edn.. Cambridge University Press.Google Scholar
Chew, J. W., Hays, R., Findlay, J. G., Knowlton, T. M., Karri, S. B. R., Cocco, R. A. & Hrenya, C. M. 2012 Cluster characteristics of geldart group b particles in a pilot-scale cfb riser. i. monodisperse systems. Chem. Engng Sci. 68 (1), 7281.CrossRefGoogle Scholar
Cloete, S., Johansen, S. T. & Amini, S. 2012 An assessment of the ability of computational fluid dynamic models to predict reactive gas–solid flows in a fluidized bed. Powder Technol. 215 (16), 1525.CrossRefGoogle Scholar
Derksen, J. J. & Sundaresan, S. 2007 Direct numerical simulations of dense suspensions: wave instabilities in liquid–fluidized beds. J. Fluid Mech. 587, 303336.CrossRefGoogle Scholar
Desjardins, O., Fox, R. O. & Villedieu, P. 2008 A quadrature-based moment method for dilute fluid–particle flows. J. Comput. Phys. 227 (4), 25142539.CrossRefGoogle Scholar
Drew, D. A. & Passman, S. L. 1999 Theory of Multicomponent Fluids, 1st edn. Springer.CrossRefGoogle Scholar
Fox, R. O. 2012 Large-eddy-simulation tools for multiphase flows. Annu. Rev. Fluid Mech. 44, 4776.CrossRefGoogle Scholar
Fox, R. O. 2014 On multiphase turbulence models for collisional fluid–particle flows. J. Fluid Mech. 742, 368424.CrossRefGoogle Scholar
Fullmer, W. D. & Hrenya, C. M. 2016 Quantitative assessment of fine-grid kinetic-theory-based predictions of mean-slip in unbounded fluidization. AIChE J. 62 (1), 1117.CrossRefGoogle Scholar
Fullmer, W. D. & Hrenya, C. M. 2017a Are continuum predictions of clustering chaotic? Chaos 27 (3), 031101.CrossRefGoogle ScholarPubMed
Fullmer, W. D. & Hrenya, C. M. 2017b The clustering instability in rapid granular and gas–solid flows. Annu. Rev. Fluid Mech. 49, 485510.CrossRefGoogle Scholar
Garzó, V. 2005 Instabilities in a free granular fluid described by the Enskog equation. Phys. Rev. E 72 (2), 012905.Google Scholar
Garzó, V. & Dufty, J. 1999 Dense fluid transport for inelastic hard spheres. Phys. Rev. E 59 (5), 58955911.Google ScholarPubMed
Garzó, V., Fullmer, W. D., Hrenya, C. M. & Yin, X. L. 2016 Transport coefficients of solid particles immersed in a viscous gas. Phys. Rev. E 93 (1), 021106.Google Scholar
Garzó, V. & Santos, A. 2003 Kinetic Theory of Gases in Shear Flows: Nonlinear Transport. Kluwer Academic.CrossRefGoogle Scholar
Garzó, V., Tenneti, S., Subramaniam, S. & Hrenya, C. M. 2012 Enskog kinetic theory for monodisperse gas–solid flows. J. Fluid Mech. 712, 129168.CrossRefGoogle Scholar
Gidaspow, D. 1994 Multiphase Flow and Fluidization. Academic.Google Scholar
Gidaspow, D., Tsuo, Y. P. & Luo, K. M. 1989 Computed and experimental cluster formation and velocity profiles in circulating fluidized beds. In Fluidization IV, Intl Fluidization Conf., Banff, Alberta, Canada.Google Scholar
Glasser, B. J., Sundaresan, S. & Kevrekidis, I. G. 1998 From bubbles to clusters in fluidized beds. Phys. Rev. Lett. 81, 18491852.CrossRefGoogle Scholar
Goldhirsch, I. 2003 Rapid granular flows. Annu. Rev. Fluid Mech. 35, 267293.CrossRefGoogle Scholar
Goldhirsch, I. & Zanetti, G. 1993 Clustering instability in dissipative gases. Phys. Rev. Lett. 70 (11), 16191622.CrossRefGoogle ScholarPubMed
Heynderickx, G. J., Das, A. K., De Wilde, J. & Marin, G. B. 2004 Effect of clustering on gas–solid drag in dilute two-phase flow. Ind. Engng Chem. Res. 43 (16), 46354646.CrossRefGoogle Scholar
Hopkins, M. A. & Louge, M. Y. 1991 Inelastic microstructure in rapid granular flows of smooth disks. Phys. Fluids A 3 (1), 4757.CrossRefGoogle Scholar
Hou, Q. F., Zhou, Z. Y. & Yu, A. B. 2012 Micromechanical modeling and analysis of different flow regimes in gas fluidization. Chem. Engng Sci. 84, 449468.CrossRefGoogle Scholar
Igci, Y., Andrews, A. T., Sundaresan, S., Pannala, S. & O’Brien, T. 2008 Filtered two-fluid models for fluidized gas–particle suspensions. AIChE J. 54 (6), 14311448.CrossRefGoogle Scholar
Igci, Y. & Sundaresan, S. 2011 Verification of filtered two-fluid models for gas–particle flows in risers. AIChE J. 57 (10), 26912707.CrossRefGoogle Scholar
Ishii, M. & Hibiki, T. 2006 Thermo-Fluid Dynamics of Two-Phase Flow, 1st edn. Springer.CrossRefGoogle Scholar
Jackson, R. 2000 The Dynamics of Fluidized Particles. Cambridge University Press.Google Scholar
Kajishima, T. & Takiguchi, S. 2002 Interaction between particle clusters and particle-induced turbulence. Intl J. Heat Fluid Flow 23 (5), 639646.CrossRefGoogle Scholar
Koch, D. L. 1990 Kinetic theory for a monodisperse gas–solid suspension. Phys. Fluids A 2, 17111723.CrossRefGoogle Scholar
Koch, D. L. & Sangani, A. S. 1999 Particle pressure and marginal stability limits for a homogeneous monodiperse gas–fluidized bed: kinetic theory and numerical simulations. J. Fluid Mech. 400 (1), 229263.CrossRefGoogle Scholar
Ladd, A. J. C. & Verberg, R. 2001 Lattice–Boltzmann simulations of particle-fluid suspensions. J. Stat. Phys. 104 (5–6), 11911251.CrossRefGoogle Scholar
LaMarche, C. Q., Liu, P. Y., Kellogg, K. M., Weimer, A. W. & Hrenya, C. M. 2015 A system-size independent validation of CFD-DEM for noncohesive particles. AIChE J. 61 (12), 40514058.CrossRefGoogle Scholar
van Leer, B. 1979 Towards the ultimate conservative difference scheme. V. A second-order sequel to Godunovs method. J. Comput. Phys. 32, 101136.CrossRefGoogle Scholar
Li, J. H. & Kwauk, M. 2001 Multiscale nature of complex fluid–particle systems. Ind. Engng Chem. Res. 40 (20), 42274237.CrossRefGoogle Scholar
Li, T., Wang, L., Rogers, W., Zhou, G. F. & Ge, W. 2017 An approach for drag correction based on the local heterogeneity for gas–solid flows. AIChE J. 63 (4), 12031212.CrossRefGoogle Scholar
Liu, X., Wang, L. & Ge, W. 2017 Meso-scale statistical properties of gas–solid flow – a direct numerical simulation (DNS) study. AIChE J. 63 (1), 314.CrossRefGoogle Scholar
Lun, C. K. K. & Savage, S. B. 2003 Kinetic Theory for Inertia Flows of Dilute Turbulent Gas–Solids Mixtures. pp. 263286. Springer.Google Scholar
Lun, C. K. K., Savage, S. B., Jeffrey, D. J. & Chepurniy, N. 1984 Kinetic theories for granular flow: inelastic particles in Couette flow and slightly inelastic particles in a general flowfield. J. Fluid Mech. 140, 223256.CrossRefGoogle Scholar
Ma, D. & Ahmadi, G. 1988 A kinetic-model for rapid granular flows of nearly elastic particles including interstitial fluid effects. Powder Technol. 56 (3), 191207.CrossRefGoogle Scholar
Mitrano, P. P., Garzo, V., Hilger, A. M., Ewasko, C. J. & Hrenya, C. M. 2012 Assessing a hydrodynamic description for instabilities in highly dissipative, freely cooling granular gases. Phys. Rev. E 85 (4), 041303.Google ScholarPubMed
Mitrano, P. P., Zenk, J. R., Benyahia, S., Galvin, J. E., Dahl, S. R. & Hrenya, C. M. 2014 Kinetic-theory predictions of clustering instabilities in granular flows: beyond the small-Knudsen-number regime. J. Fluid Mech. 738, R2.CrossRefGoogle Scholar
Morris, A. B., Ma, Z., Pannala, S. & Hrenya, C. M. 2016 Simulations of heat transfer to solid particles flowing through an array of heated tubes. Solar Energy 130, 101115.CrossRefGoogle Scholar
Nguyen, N. Q. & Ladd, A. J. C. 2002 Lubrication corrections for lattice-Boltzmann simulations of particle suspensions. Phys. Rev. E 66 (4), 046708.Google ScholarPubMed
van Noije, T. P. C. & Ernst, M. H. 1998 Velocity distributions in homogeneous granular fluids: the free and heated case. Granul. Matt. 1, 5764.CrossRefGoogle Scholar
Ozel, A., Fede, P. & Simonin, O. 2013 Development of filtered Euler–Euler two-phase model for circulating fluidised bed: high resolution simulation, formulation and a priori analyses. Intl J. Multiphase Flow 55, 4363.CrossRefGoogle Scholar
Parmentier, J. F., Simonin, O. & Delsart, O. 2012 A functional subgrid drift velocity model for filtered drag prediction in dense fluidized bed. AIChE J. 58 (4), 10841098.CrossRefGoogle Scholar
Passalacqua, A., Fox, R. O., Garg, R. & Subramaniam, S. 2010 A fully coupled quadrature-based moment method for dilute to moderately dilute fluid–particle flows. Chem. Engng Sci. 65 (7), 22672283.CrossRefGoogle Scholar
Patankar, S. V. 1980 Numerical Heat Transfer and Fluid Flow. Hemisphere Pub. Corp., McGraw-Hill.Google Scholar
Radl, S. & Sundaresan, S. 2014 A drag model for filtered Euler–Lagrange simulations of clustered gas–particle suspensions. Chem. Engng Sci. 117, 416425.CrossRefGoogle Scholar
Rubinstein, G. J., Derksen, J. J. & Sundaresan, S. 2016 Lattice Boltzmann simulations of low-Reynolds-number flow past fluidized spheres: effect of Stokes number on drag force. J. Fluid Mech. 788, 576601.CrossRefGoogle Scholar
Sato, Y., Sadatomi, M. & Sekoguchi, K. 1981 Momentum and heat transfer in two-phase bubble flow. I. Theory. Intl J. Multiphase Flow 7, 167177.CrossRefGoogle Scholar
Schneiderbauer, S. & Pirker, S. 2014 Filtered and heterogeneity-based subgrid modifications for gas–solid drag and solid stresses in bubbling fluidized beds. AIChE J. 60 (3), 839854.CrossRefGoogle Scholar
Shah, M. T., Utikar, R. P., Tade, M. O., Evans, G. M. & Pareek, V. K. 2013 Effect of a cluster on gas–solid drag from lattice Boltzmann simulations. Chem. Engng Sci. 102, 365372.CrossRefGoogle Scholar
Sinclair, J. L. & Jackson, R. 1989 Gas–particle flow in a vertical pipe with particle–particle interactions. AIChE J. 35 (9), 14731486.CrossRefGoogle Scholar
Sundaresan, S. 2003 Instabilities in fluidized beds. Annu. Rev. Fluid Mech. 35, 6388.CrossRefGoogle Scholar
Tang, Y., Peters, E. A. J. F., Kuipers, J. A. M., Kriebitzsch, S. H. L. & van der Hoef, M. A. 2015 A new drag correlation from fully resolved simulations of flow past monodisperse static arrays of spheres. AIChE J. 61 (2), 688698.CrossRefGoogle Scholar
Tenneti, S., Garg, R. & Subramaniam, S. 2011 Drag law for monodisperse gas–solid systems using particle-resolved direct numerical simulation of flow past fixed assemblies of spheres. Intl J. Multiphase Flow 37 (9), 10721092.CrossRefGoogle Scholar
Tenneti, S. & Subramaniam, S. 2014 Particle-resolved direct numerical simulation for gas–solid flow model development. Annu. Rev. Fluid Mech. 46, 199230.CrossRefGoogle Scholar
Tsuji, Y., Kawaguchi, T. & Tanaka, T. 1993 Discrete particle simulation of two-dimensional fluidized bed. Powder Technol. 77, 7987.CrossRefGoogle Scholar
Tsuji, Y., Tanaka, T. & Yonemura, S. 1994 Particle induced turbulence. Appl. Mech. Rev. 47 (6), 7579.CrossRefGoogle Scholar
Tsuo, Y. P. & Gidaspow, D. 1990 Computation of flow patterns in circulating fluidized-beds. AIChE J. 36 (6), 885896.CrossRefGoogle Scholar
Uhlmann, M. & Doychev, T. 2014 Sedimentation of a dilute suspension of rigid spheres at intermediate Galileo numbers: the effect of clustering upon the particle motion. J. Fluid Mech. 752, 310348.CrossRefGoogle Scholar
Vreman, B., Geurts, B., Deen, N., Kuipers, J. & Kuerten, J. 2009 Two- and four-way coupled Euler–Lagrangian large-eddy simulation of turbulent particle-laden channel flow. Flow Turbul. Combust. 82 (1), 4771.CrossRefGoogle Scholar
Wallis, G. B. 1969 One-Dimensional Two-phase Flow. McGraw-Hill.Google Scholar
Wang, J. W. 2008 High-resolution Eulerian simulation of rms of solid volume fraction fluctuation and particle clustering characteristics in a cfb riser. Chem. Engng Sci. 63 (13), 33413347.CrossRefGoogle Scholar
Wang, J. W., van der Hoef, M. A. & Kuipers, J. A. M. 2009 Why the two-fluid model fails to predict the bed expansion characteristics of geldart a particles in gas–fluidized beds: a tentative answer. Chem. Engng Sci. 64 (3), 622625.CrossRefGoogle Scholar
Wang, J. W., van der Hoef, M. A. & Kuipers, J. A. M. 2010a Coarse grid simulation of bed expansion characteristics of industrial-scale gas–solid bubbling fluidized beds. Chem. Engng Sci. 65 (6), 21252131.CrossRefGoogle Scholar
Wang, L. M., Zhou, G. F., Wang, X. W., Xiong, Q. G. & Ge, W. 2010b Direct numerical simulation of particle-fluid systems by combining time-driven hard-sphere model and lattice Boltzmann method. Particuology 8 (4), 379382.CrossRefGoogle Scholar
Wang, S. A., Lu, H. L., Liu, G. D., Sheng, Z. H., Xu, P. F. & Gidaspow, D. 2011 Modeling of cluster structure-dependent drag with Eulerian approach for circulating fluidized beds. Powder Technol. 208 (1), 98110.Google Scholar
Waterson, N. P. & Deconinck, H. 2007 Design principles for bounded higher-order convection schemes – a unified approach. J. Comput. Phys. 224, 182207.CrossRefGoogle Scholar
Wen, C. Y. & Yu, Y. H. 1966 Mechanics of fluidization. Chem. Engng Prog. Symp. Ser. 62 (62), 100111.Google Scholar
Wylie, J. J. & Koch, D. L. 2000 Particle clustering due to hydrodynamic interactions. Phys. Fluids 12 (5), 964970.CrossRefGoogle Scholar
Wylie, J. J., Koch, D. L. & Ladd, A. J. C. 2003 Rheology of suspensions with high particle inertia and moderate fluid inertia. J. Fluid Mech. 480, 95118.CrossRefGoogle Scholar
Xie, N., Battaglia, F. & Pannala, S. 2008 Effects of using two- versus three-dimensional computational modeling of fluidized beds – part i, hydrodynamics. Powder Technol. 182 (1), 113.CrossRefGoogle Scholar
Ye, M., van der Hoef, M. A. & Kuipers, J. A. M. 2005 The effects of particle and gas properties on the fluidization of geldart a particles. Chem. Engng Sci. 60 (16), 45674580.CrossRefGoogle Scholar
Yin, X., Zenk, J. R., Mitrano, P. P. & Hrenya, C. M. 2013 Impact of collisional versus viscous dissipation on flow instabilities in gas–solid systems. J. Fluid Mech. 727, R2.CrossRefGoogle Scholar
Zhou, G. F., Xiong, Q. G., Wang, L. M., Wang, X. W., Ren, X. X. & Ge, W. 2014 Structure-dependent drag in gas–solid flows studied with direct numerical simulation. Chem. Engng Sci. 116, 922.CrossRefGoogle Scholar

Fullmer et al. supplementary movie

Chaotic regime: Evolution of particles from a single DNS realization in a dp-thick xy-slice about the z-centerline colored by filtered solids concentration. Conditions are: Ar = 1432, <φ> = 0.15, e = 1.0, and ρ* = 30.

Download Fullmer et al. supplementary movie(Video)
Video 3.9 MB

Fullmer et al. supplementary movie

Chaotic regime: Evolution of solids concentration from KT-TFM simulation in the xy-plane at the z-centerline. Conditions are: Ar = 1432, <φ> = 0.15, e = 1.0, and ρ* = 32.

Download Fullmer et al. supplementary movie(Video)
Video 5.3 MB

Fullmer et al. supplementary movie

2-D plug regime: Evolution of particles from a single DNS realization in a dp-thick xy-slice about the z-centerline colored by filtered solids concentration. Conditions are: Ar = 1432, <φ> = 0.15, e = 1.0, and ρ* = 100.

Download Fullmer et al. supplementary movie(Video)
Video 12 MB

Fullmer et al. supplementary movie

2-D plug regime: Evolution of solids concentration from KT-TFM simulation in the xy-plane at the z-centerline. Conditions are: Ar = 1432, <φ> = 0.15, e = 1.0, and ρ* = 100.

Download Fullmer et al. supplementary movie(Video)
Video 4.9 MB

Fullmer et al. supplementary movie

1-D plug regime: Evolution of particles from a single DNS realization in a dp-thick xy-slice about the z-centerline colored by filtered solids concentration. Conditions are: Ar = 1432, <φ> = 0.15, e = 1.0, and ρ* = 1000.

Download Fullmer et al. supplementary movie(Video)
Video 14.1 MB

Fullmer et al. supplementary movie

1-D plug regime: Evolution of solids concentration from KT-TFM simulation in the xy-plane at the z-centerline. Conditions are: Ar = 1432, <φ> = 0.15, e = 1.0, and ρ* = 1000.

Download Fullmer et al. supplementary movie(Video)
Video 4.7 MB