Hostname: page-component-76fb5796d-qxdb6 Total loading time: 0 Render date: 2024-04-25T08:20:52.201Z Has data issue: false hasContentIssue false

Preparation and characterization of LiFePO4/graphene-oxide composites

Published online by Cambridge University Press:  01 February 2011

Hongming Yu
Affiliation:
yhm1618@zju.edu.cn, Zhejiang University, Materials Science and Engineering, Hangzhou, China
Ruijun Pan
Affiliation:
panruijun@zju.edu.cn, Zhejiang University, Materials Science and Engineering, Hangzhou, Zhejiang, China
Xuefei Chen
Affiliation:
chenxuefei@zju.edu.cn, Zhejiang University, Materials Science and Engineering, Hangzhou, Zhejiang, China
Wentao Song
Affiliation:
gswlswt@zju.edu.cn, Zhejiang University, Materials Science and Engineering, Hangzhou, Zhejiang, China
Jian Xie
Affiliation:
xiejian1977@zju.edu.cn, Zhejiang University, Materials Science and Engineering, Hangzhou, Zhejiang, China
Xinbing Zhao
Affiliation:
zhaoxb@zju.edu.cn, Zhejiang University, Materials Science and Engineering, Hangzhou, Zhejiang, China
Get access

Abstract

LiFePO4/graphene-oxide (GNO) composites were prepared by co-precipitation method. Their structure and morphology were investigated by X-ray diffraction, Fourier transform infrared spectra, field emission scanning electron microscopy, and transmission electron microscopy. A low content of GNO can be uniformly dispersed in the matrix of LiFePO4 nano particles, while at a higher content, GNO will aggregate severely and has a negative effect on the electrochemical performance of LiFePO4. Further heat treatment can improve the crystallinity of LiFePO4, and improve the electrochemical performance of LiFePO4 with a relatively low content of GNO.

Type
Research Article
Copyright
Copyright © Materials Research Society 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1 Padhi, A. K., Nanjundaswamy, K. S., Goodenough, J. B., J. Electrochem. Soc., 144, 1188 (1997).Google Scholar
2 Chung, S. Y., Bloking, J. T., Chiang, Y. M., Nat. Mater., 1, 123 (2002).Google Scholar
3 Ravet, N., Chouinard, Y., Magnan, J. F., Besner, S., Gauthier, M., Armand, M., J. Power Sources., 97–98, 503 (2001).Google Scholar
4 Chen, Z., Dahn, J. R., J. Electrochem. Soc., 149, A1184 (2002).Google Scholar
5 Delacourt, C., Poizot, P., Levasseur, S., Masquelier, C., Electrochem. Solid State Lett., 9, A352–A355 (2006).Google Scholar
6 Kang, B., Ceder, G., Nature, 458, 190 (2009).Google Scholar
7KNovoselov, . S., Geim, A. K., Morozov, S. V., Jiang, D., Zhang, Y., Dubonos, S. V., Grigorieva, I. V., Firsov, A. A., Science, 306, 666 (2004)Google Scholar
8 Novoselov, K. S., Geim, A. K., Morozov, S. V., Jiang, D., Katsnelson, M. I., Grigorieva, I. V., Dubonos, S. V., A. Firsov, A., Nature, 438, 197 (2005)Google Scholar
9 Stankovich, S., Dikin, D. A., Piner, R. D., Kohlhaas, K. A., Kleinhammes, A., Jia, Y., Wu, Y., Nguyen, S. T., Ruoff, R. S., Carbon, 45, 1558 (2007)Google Scholar
10 Becerril, H. A., Mao, J., Liu, Z., Stoltenberg, R. M., Bao, Z., Chen, Y., ACS Nano, 2, 463 (2008)Google Scholar
11 Burba, C. M., Frech, R., J. Electrochem. Soc., 151, A1032 (2004).Google Scholar