Hostname: page-component-8448b6f56d-sxzjt Total loading time: 0 Render date: 2024-04-23T12:11:48.774Z Has data issue: false hasContentIssue false

Anomalous X-Ray Scattering On Self-Assembled Islands: Direct Evaluation Of Composition Profile, Strain Relaxation, And Elastic Energy

Published online by Cambridge University Press:  11 February 2011

A. Malachias
Affiliation:
Departamento de Física, Universidade Federal de Minas Gerais, MG, Brazil
R. Magalhães-Paniago
Affiliation:
Departamento de Física, Universidade Federal de Minas Gerais, MG, Brazil Laboratório Nacional de Luz Síncrotron, Campinas, Brazil
G. Medeiros-Ribeiro
Affiliation:
Laboratório Nacional de Luz Síncrotron, Campinas, Brazil Hewlett-Packard Laboratories, 1501 Page Mill Rd., Palo Alto, CA 94117
S. Kycia
Affiliation:
Laboratório Nacional de Luz Síncrotron, Campinas, Brazil
T.I. Kamins
Affiliation:
Hewlett-Packard Laboratories, 1501 Page Mill Rd., Palo Alto, CA 94117
Get access

Abstract

The growth of Ge on Si(001) produces a wealth of morphologies of nanocrystals. After the deposition of a two-dimensional Ge film 3.5 monolayers thick, islands are formed, and several shape transitions can be observed depending on the growth temperature, rate and deposited thickness. In this work we combine atomic force microscopy and two different types of measurements of anomalous x-ray scattering to determine this elastic energy both in pyramid and dome shaped islands. By comparing pyramids and domes data, we have observed both an increase of lattice parameter and enhancement of interdiffusion for the domes. These results show that there is a drastic decrease of the elastic energy stored per atom upon this particular shape transition.

Type
Research Article
Copyright
Copyright © Materials Research Society 2003

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Zinke-Allmang, M., Feldman, L. C., and Grabow, M. H., Surf. Sci. Rep. 16, 377 (1992).Google Scholar
Ross, F. M., Tersoff, J., and Tromp, R. M., Phys. Rev. Lett. 80, 984 (1998).Google Scholar
Shchukin, V. A. et al., Phys. Rev. Lett. 75, 2968 (1995).Google Scholar
[4] Daruka, I. and Barabási, A.-L., Phys. Rev. Lett. 79, 3708 (1997);Google Scholar
[5] Medeiros-Ribeiro, G., Bratkovski, A. M., Kamins, T. I., Ohlberg, D. A. A., and Stanley Williams, R., Science 279, 353 (1998).Google Scholar
[6] Floro, J. A., Lucadamo, G. A., Chason, E., Freund, L. B., Sinclair, M., Twesten, R. D., and Hwang, R. Q., Phys. Rev. Lett. 80, 4717 (1998)Google Scholar
[7] Kamins, T. I., Medeiros-Ribeiro, G., Ohlberg, D. A. A., and Stanley Williams, R., J. Appl. Phys. 85, 1159 (1999)Google Scholar
[8] Kamins, T. I., Medeiros-Ribeiro, G., Ohlberg, D.A.A., and Stan Williams, R., Appl. Phys. A 67, 1 (1998).Google Scholar
[9] Chaparro, S. A., Drucker, Jeff, Zhang, Y., Chandrasekhar, D., McCartney, M. R., and Smith, David J., Phys. Rev. Lett. 83, 1199 (1999).Google Scholar
[10] Boscherini, F., Capellini, G., Di Gaspare, L., Rosei, F., Motta, N., and Mobilio, S., Appl. Phys. Lett. 76, 682 (2000).Google Scholar
[11] Capellini, G., De Seta, M., and Evangelisti, F., Appl. Phys. Lett. 78, 303 (2001).Google Scholar
[12] Miller, P. D., Liu, C.-P., Henstrom, W. L., Gibson, J. M., Huang, Y., Zhang, P., Kamins, T. I., Basile, D. P., and Stanley Williams, R., Appl. Phys. Lett. 75, 46 (1999).Google Scholar
[13] Liu, C.-P., Gibson, J. M., Cahill, D. G., Kamins, T. I., Basile, D. P., and Stanley Williams, R., Phys. Rev. Lett. 84, 1958 (2000);Google Scholar
Henstrom, W. L., Liu, C.-P., Gibson, J. M., Kamins, T. I., and Stanley Williams, R., Appl. Phys. Lett. 77, 1623 (2000).Google Scholar
[14] Kegel, I., Metzger, T. H., Lorke, A., Peisl, J., Stangl, J., Bauer, G., García, J. M., and Petroff, P. M., Phys. Rev. Lett. 85, 1694 (2000);Google Scholar
Kegel, I., Metzger, T. H., Lorke, A., Peisl, J., Stangl, J., Bauer, G., Nordlund, K., Schoenfeld, W. V., and Petroff, P. M, Phys. Rev. B 63, 035318 (2001).Google Scholar
[15] Malachias, A., Magalhães-Paniago, R., Neves, B.R.A., Rodrigues, W.N., Moreira, M.V.B., Pfannes, H.-D., de Oliveira, A.G., Kycia, S. and Metzger, T.H., Appl. Phys. Lett. 79, 4342 (2001).Google Scholar
[16] Magalhães-Paniago, R., Medeiros-Ribeiro, G., Malachias, A., Kycia, S., Kamins, T. I., and Stanley Williams, R., Phys. Rev. B 66, 245312 (2002).Google Scholar
[17] Jiang, Z. M., Jiang, X. M., Jiang, W. R., Jia, Q. J., Zheng, W. L., and Qian, D. C., Appl. Phys. Lett. 76, 3397 (2000).Google Scholar
[18] Chaparro, S. A., Zhang, Y., and Drucker, Jeff, Appl. Phys. Lett. 76, 3534 (2000)Google Scholar