Hostname: page-component-8448b6f56d-tj2md Total loading time: 0 Render date: 2024-04-15T11:56:43.418Z Has data issue: false hasContentIssue false

The Void Galaxy Survey: Galaxy Evolution and Gas Accretion in Voids

Published online by Cambridge University Press:  12 October 2016

Kathryn Kreckel
Affiliation:
MPIA, Königstuhl 17, 69117 Heidelberg, Germany email: kreckel@mpia.de
Jacqueline H. van Gorkom
Affiliation:
Columbia University, MC 5246, 550 W120th St., New York, NY 10027, USA
Burcu Beygu
Affiliation:
Kapteyn Astronomical Institute, University of Groningen, PO Box 800, 9700 AV Groningen, The Netherlands
Rien van de Weygaert
Affiliation:
Kapteyn Astronomical Institute, University of Groningen, PO Box 800, 9700 AV Groningen, The Netherlands
J. M. van der Hulst
Affiliation:
Kapteyn Astronomical Institute, University of Groningen, PO Box 800, 9700 AV Groningen, The Netherlands
Miguel A. Aragon-Calvo
Affiliation:
University of California, Riverside, CA 92521, USA
Reynier F. Peletier
Affiliation:
Kapteyn Astronomical Institute, University of Groningen, PO Box 800, 9700 AV Groningen, The Netherlands
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Voids represent a unique environment for the study of galaxy evolution, as the lower density environment is expected to result in shorter merger histories and slower evolution of galaxies. This provides an ideal opportunity to test theories of galaxy formation and evolution. Imaging of the neutral hydrogen, central in both driving and regulating star formation, directly traces the gas reservoir and can reveal interactions and signs of cold gas accretion. For a new Void Galaxy Survey (VGS), we have carefully selected a sample of 59 galaxies that reside in the deepest underdensities of geometrically identified voids within the SDSS at distances of ∼100 Mpc, and pursued deep UV, optical, Hα, IR, and HI imaging to study in detail the morphology and kinematics of both the stellar and gaseous components. This sample allows us to not only examine the global statistical properties of void galaxies, but also to explore the details of the dynamical properties. We present an overview of the VGS, and highlight key results on the HI content and individually interesting systems. In general, we find that the void galaxies are gas rich, low luminosity, blue disk galaxies, with optical and HI properties that are not unusual for their luminosity and morphology. We see evidence of both ongoing assembly, through the gas dynamics between interacting systems, and significant gas accretion, seen in extended gas disks and kinematic misalignments. The VGS establishes a local reference sample to be used in future HI surveys (CHILES, DINGO, LADUMA) that will directly observe the HI evolution of void galaxies over cosmic time.

Type
Contributed Papers
Copyright
Copyright © International Astronomical Union 2016 

References

Alpaslan, M., Robotham, A. S. G., Obreschkow, D., et al. 2014, MNRAS, 440, L106 Google Scholar
Aragón-Calvo, M. A., Platen, E., van de Weygaert, R., & Szalay, A. S. 2010, ApJ, 723, 364 CrossRefGoogle Scholar
Aragon-Calvo, M. A. & Szalay, A. S. 2013, MNRAS, 428, 3409 CrossRefGoogle Scholar
Beygu, B., Kreckel, K., van de Weygaert, R., van der Hulst, J. M., a & van Gorkom, J. H. 2013, AJ, 145, 120 Google Scholar
Beygu, B. 2014, The void galaxy survey : a study of the loneliest galaxies in the universe (Ph.D. Thesis, University of Groningen)Google Scholar
Fernández, X., van Gorkom, J. H., Hess, K. M., et al. 2013, ApJL, 770, L29 CrossRefGoogle Scholar
Grogin, N. A. & Geller, M. J. 1999, AJ, 118, 2561 Google Scholar
Grogin, N. A. & Geller, M. J. 2000, AJ, 119, 32 Google Scholar
Kereš, D., Katz, N., Weinberg, D. H., & Davé, R. 2005, MNRAS, 363, 2 Google Scholar
Kreckel, K., Platen, E., Aragón-Calvo, M. A., et al. 2011a, AJ, 141, 4 Google Scholar
Kreckel, K., Peebles, P. J. E., van Gorkom, J. H., van de Weygaert, R., & van der Hulst, J. M. 2011b, AJ, 141, 204 Google Scholar
Kreckel, K., Joung, M. R., & Cen, R. 2011c, ApJ, 735, 132 CrossRefGoogle Scholar
Kreckel, K., Platen, E., Aragón-Calvo, M. A., et al. 2012, AJ, 144, 16 CrossRefGoogle Scholar
Platen, E., van de Weygaert, R., & Jones, B. J. T. 2007, MNRAS, 380, 551 Google Scholar
Rieder, S., van de Weygaert, R., Cautun, M., Beygu, B., & Portegies Zwart, S. 2013, MNRAS, 435, 222 Google Scholar
Rojas, R. R., Vogeley, M. S., Hoyle, F., & Brinkmann, J. 2004, ApJ, 617, 50 CrossRefGoogle Scholar
Rojas, R. R., Vogeley, M. S., Hoyle, F., & Brinkmann, J. 2005, ApJ, 624, 571 CrossRefGoogle Scholar
Schaap, W. E. & van de Weygaert, R. 2000, A&A, 363, L29 Google Scholar
Sheth, R. K. & van de Weygaert, R. 2004, MNRAS, 350, 517 Google Scholar
Spavone, M. & Iodice, E. 2013, MNRAS, 434, 3310 CrossRefGoogle Scholar
Stanonik, K., Platen, E., Aragón-Calvo, M. A., et al. 2009, ApJL, 696, L6 CrossRefGoogle Scholar
Tully, R. B., Shaya, E. J., Karachentsev, I. D., et al. 2008, ApJ, 676, 184 Google Scholar
van de Weygaert, R. & Schaap, W. 2009, Data Analysis in Cosmology, 665, 291 Google Scholar
van de Weygaert, R. & Platen, E. 2011, International Journal of Modern Physics Conference Series, 1, 41 Google Scholar