Hostname: page-component-7c8c6479df-24hb2 Total loading time: 0 Render date: 2024-03-19T11:35:24.740Z Has data issue: false hasContentIssue false

Identification and characterization of cross-reactive antigens from Neospora caninum and Toxoplasma gondii

Published online by Cambridge University Press:  22 December 2004

M. LIAO
Affiliation:
National Research Center for Protozoan Diseases, Obihiro University of Agriculture and Veterinary Medicine, Inada-cho, Obihiro, Hokkaido 080-8555, Japan
X. XUAN
Affiliation:
National Research Center for Protozoan Diseases, Obihiro University of Agriculture and Veterinary Medicine, Inada-cho, Obihiro, Hokkaido 080-8555, Japan
X. HUANG
Affiliation:
National Research Center for Protozoan Diseases, Obihiro University of Agriculture and Veterinary Medicine, Inada-cho, Obihiro, Hokkaido 080-8555, Japan
H. SHIRAFUJI
Affiliation:
National Research Center for Protozoan Diseases, Obihiro University of Agriculture and Veterinary Medicine, Inada-cho, Obihiro, Hokkaido 080-8555, Japan
S. FUKUMOTO
Affiliation:
National Research Center for Protozoan Diseases, Obihiro University of Agriculture and Veterinary Medicine, Inada-cho, Obihiro, Hokkaido 080-8555, Japan
H. HIRATA
Affiliation:
National Research Center for Protozoan Diseases, Obihiro University of Agriculture and Veterinary Medicine, Inada-cho, Obihiro, Hokkaido 080-8555, Japan
H. SUZUKI
Affiliation:
National Research Center for Protozoan Diseases, Obihiro University of Agriculture and Veterinary Medicine, Inada-cho, Obihiro, Hokkaido 080-8555, Japan
K. FUJISAKI
Affiliation:
National Research Center for Protozoan Diseases, Obihiro University of Agriculture and Veterinary Medicine, Inada-cho, Obihiro, Hokkaido 080-8555, Japan

Abstract

Murine monoclonal antibodies (mAbs) against Neospora caninum tachyzoites were produced to identify the cross-reactive antigens between N. caninum and Toxoplasma gondii. Ten mAbs recognizing cross-reactive antigens of both parasites were obtained and tentatively classified into 6 different groups based on their reactivity patterns in an indirect fluorescent antibody test and Western blot analysis. Three mAbs in group 1 recognized antigens located on the surface of parasites with molecular masses ranging from 28 to 76 kDa; one mAb in group 2 recognized antigens located on interior organelles of parasites with a molecular mass of 50 kDa; one mAb in group 3 recognized antigens located on interior organelles of parasites with molecular masses of 35 kDa and 14 kDa; three mAbs in group 4 recognized antigens located on interior organelles with a molecular mass of 64 kDa; one mAb in group 5 recognized antigens located on the surface of parasites with an unknown molecular mass; one mAb in group 6 recognized antigens located on the apical end of parasites with an unknown molecular mass. The mAbs in groups 1, 2, 3, and 5 showed inhibitory effects on the growth of the two parasites in vitro in a dose-dependent manner. A cDNA expression library prepared from N. caninum tachyzoite mRNA was immunoscreened with the mAb panel. Three kinds of proteins, protein disulfide isomerase (PDI), heat-shock protein 70 (HSP70), and ribosomal protein 1 (RP1), were identified as cross-reactive antigens recognized by mAbs in groups 2, 3, and 4, respectively. Some of the proteins could be useful in developing vaccines or drugs for controlling the diseases caused by the two parasites.

Type
Research Article
Copyright
© 2005 Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

ACHOUR, Y. B., CHENIK, M., LOUZIR, H. & DELLAGI, K. ( 2002). Identification of a Disulfide Isomerase protein of Leishmania major as a putative virulence factor. Infection and Immunity 70, 35763585.CrossRefGoogle Scholar
AHN, H. J., SONG, K. J., SON, E. S., SHIN, J. C. & NAM, H. W. ( 2001). Protease activity and host cell binding of the 42-kDa rhoptry protein from Toxoplasma gondii after secretion. Biochemical and Biophysical Research Communications 187, 630635.CrossRefGoogle Scholar
ASAI, T., HOWE, D. K., NAKAJIMA, K., NOZAKI, T., TAKEUCHI, T. & SIBLEY, L. D. ( 1998). Neospora caninum: tachyzoites express a potent Type-I nucleoside triphosphate hydrolase, but lack nucleoside diphosphate hydrolase activity. Experimental Parasitology 90, 277285.CrossRefGoogle Scholar
BASZLER, T. V., KNOWLES, D. P., DUBEY, J. P., GAY, J. M., MATHISON, B. A. & McELWAIN, T. F. ( 1996). Serological diagnosis of bovine Neosporosis by Neospora caninum monoclonenal antibody-based competitive inhibition ELISA. Journal of Clinical Microbiology 34, 14231428.Google Scholar
CHEN, M., AOSAI, F., MUN, H. E., NOROSE, K., HATA, H. & YANO, A. ( 2000). Anti-HSP70 autoantibody formation by B-1 cells in Toxoplasma gondii-infected mice. Infection and Immunity 68, 48934899.CrossRefGoogle Scholar
CHOMCZYNSKI, P. & SACCHI, N. ( 1987). Single-step method of RNA isolation by acid guanidinium thiocyanate-phenol-thymidylate extraction. Analytical Biochemistry 162, 156159.CrossRefGoogle Scholar
DUBEY, J. P. & LINDSAY, D. S. ( 1996). A review of Neospora caninum and Neosporosis. Veterinary Parasitology 67, 159.CrossRefGoogle Scholar
DUBEY, J. P., ROMAND, S., HILALI, M., KWOK, O. C. & THULLIRZ, P. ( 1998). Seroprevalence of antibodies to Neospora caninum and Toxoplasma gondii in water buffaloes (Bubalus bubalis) from Egypt. International Journal for Parasitology 28, 527529.CrossRefGoogle Scholar
DUBEY, J. P., VENTURINI, M. C., VENTURINI, L., McKINNEY, J. & PECORARO, M. ( 1999). Prevalence of antibodies to Sarcocystis neurona, Toxoplasma gondii and Neospora caninum in horses from Argentina. Veterinary Parasitology 86, 5962.CrossRefGoogle Scholar
FLORENTA, I., MOURAY, E., ALI, F. D., DROBECQ, H., GIRAULT, S., SCHREVEL, J., SERGHERAERT, C. & GRELLIER, P. ( 2000). Cloning of Plasmodium falciparum protein disulfide isomerase homologue by affinity purification using the antiplasmodial inhibitor 1,4-bis{3-[N-(cyclohexyl methyl)amino]propyl}piperazine. FEBS Letters 484, 246252.CrossRefGoogle Scholar
GILBERT, H. F. ( 1998). Protein disulfide isomerase. Methods in Enzymology 290, 2650.CrossRefGoogle Scholar
HEHL, A. B., LEKUTIS, C., GRIGG, M. E., BRADLEY, P. J., DUBREMETZ, J. F., ORTEGA-BARRIA, E. & BOOTHROYD, J. C. ( 2000). Toxoplasma gondii homologue of plasmodium apical membrane antigen 1 is involved in invasion of host cells. Infection and Immunity 68, 70787086.CrossRefGoogle Scholar
HOWE, D. K., CRAWORD, A. C., LINDSAY, D. S. & SIBLEY, L. D. ( 1998). The p29 and p35 immunodominant antigens of Neospora caninum tachyzoites are homologous to the family of surface antigens of Toxoplasma gondii. Infection and Immunity 66, 53225328.Google Scholar
HOWE, D. K. & SIBLEY, L. D. ( 1999). Comparision of the major antigens of Neospora caninum and Toxoplasma gondii. International Journal for Parasitology 29, 14891496.CrossRefGoogle Scholar
IKADAI, H., TAMAKI, Y., XUAN, X., IGARASHI, I., KAWAI, S., NAGASAWA, H., FUJISAKI, K., TOYODA, Y., SUZUKI, N. & MIKAMI, T. ( 1999). Inhibitory effect of monoclonal antibodies on the growth of Babesia caballi. International Journal for Parasitology 29, 17851791.CrossRefGoogle Scholar
KANEKO, Y., TAKASHMA, Y., XUAN, X., IGARASHI, I., NAGASAWA, H., MIKAMI, T. & OTSUKA, H. ( 2004). Natural IgM antibodies in sera from various animals but not the cat kill Toxoplasma gondii by activating the classical complement pathway. Parasitology 128, 123129.CrossRefGoogle Scholar
KASPER, L. H. & KHAN, I. A. ( 1998). Antigen-specific CD8+ cells protect against lethal toxoplasmosis in mice infected with Neospora caninum. Infection and Immunity 66, 15541560.Google Scholar
LINDSAY, D. S., LENZ, S. D., DYKSTRA, C. C., BLAGBURN, B. L. & DUBEY, J. P. ( 1998). Vaccination of mice with Neospora caninum: response to oral challenge with Toxoplasma gondii oocysts. The Journal of Parasitology 84, 311315.CrossRefGoogle Scholar
LINDSAY, D. S., SPEER, C. A. & TOIVIO-KINNUCAN, M. A. ( 1993). Use of infected cultured cells to compare ultrastructurral features of Neospora caninum from dogs and Toxoplasma gondii. America Journal of Veterinary Research 54, 103106.Google Scholar
McALLISTER, M. M., PARMLEY, S. F., WEISS, L. M., WELCH, V. J. & McGUIRE, A. M. ( 1996). An immunohistochemical method for detecting bradyzoite antigen (BAG5) in Toxoplasma gondii-infected tissues cross-reacts with a Neospora caninum bradyzoite antigen. The Journal of Parasitology 82, 354355.CrossRefGoogle Scholar
MEEK, B., BACK, J. W., KLAREN, V. N. A., SPEIJER, D. & PEEK, R. ( 2002 a). Protein disulfide isomerase of Toxoplasma gondii is targeted by mucosal IgA antibodies in human. FEBS Letters 522, 104108.Google Scholar
MEEK, B., BACK, J. W., KLAREN, V. N. A., SPEIJER, D. & PEEK, R. ( 2002 b). Conserved regions of protein disulfide isomerase are targeted by natural IgA antibodies in human. International Immunology 14, 12911301.Google Scholar
MEEK, B., KLAREN, V. N., VAN HAERINGEN, N. J., KIJLSTRA, A. & PEEK, R. ( 2000). IgA antibodies to Toxoplasma gondii in human tears. Investigative Ophthalmology and Visual Science 41, 25842590.Google Scholar
MUN, H. S., NOROSE, K., AOSAI, F., CHEN, M. & YANO, A. ( 2000). A role of carboxy-terminal region of Toxoplasma gondii-heat shock protein 70 in enhancement of T. gondii infection in mice. The Korean Journal of Parasitology 38, 107110.CrossRefGoogle Scholar
NISHIKAWA, Y., CLAVERIA, F. G., FUJISAKI, K. & NAGASAWA, H. ( 2002). Studies on serological cross-reaction of Neospora caninum with Toxoplasma gondii and Hammondia heydorni. Journal of Veterinary Medicine Science 64, 161164.CrossRefGoogle Scholar
NISHIKAWA, Y., XUAN, X., MAKALA, L., VIELEMEYER, O., JOINER, K. & NAGASAWA, H. ( 2003). Characterization of Toxoplasma gondii engineered to express mouse interferon-gamma. International Journal for Parasitology 33, 15251535.CrossRefGoogle Scholar
RICO, A. I., REAL, G. D. & SOTO, M. ( 1998). Characterization of the immunostimulatory properties of Leishmania infantum Hsp70 by fusion to the Escherichia coli maltose-binding protein in normal and nu/nu BALB/c mice. Infection and Immunity 66, 347352.Google Scholar
SINGH, S., SEHGAL, A., WAGHMARE, S., CHAKRABORTY, T., GOSWAMI, A. & SHARMA, S. ( 2002). Surface expression of the conserved ribosomal protein P0 on parasite and other cells. Molecular and Biochemical Parasitology 119, 121124.CrossRefGoogle Scholar
YANG, T. H., AOSAI, F., NOROSE, K., MUN, H. S. & YANO, A. ( 1997). Heat shock cognate protein 71-associated peptides function as an epitope for Toxoplasma gondii-specific CD4+ CTL. Microbiology and Immunology 41, 553561.CrossRefGoogle Scholar