Hostname: page-component-8448b6f56d-mp689 Total loading time: 0 Render date: 2024-04-19T08:43:25.740Z Has data issue: false hasContentIssue false

Stress Evolution During Fe(001) Epitaxy on GaAs(001)

Published online by Cambridge University Press:  17 March 2011

R. Koch
Affiliation:
Paul-Drude-Institut für Festkörperelektronik, Hausvogteiplatz 5-7, D-10117, Berlin
R. Nötzel
Affiliation:
Semiconductor Physics, University of Technology, Eindhoven, The Netherlands
B. Wassermann
Affiliation:
Institut für Experimentalphysik, Freie Universität Berlin, Arnimallee 14, D-14195, Berlin
G. Wedler
Affiliation:
Institut für Experimentalphysik, Freie Universität Berlin, Arnimallee 14, D-14195, Berlin
Get access

Abstract

Fe films on GaAs substrates have evolved as a model system for the integration of magnetic materials with semiconductors. We report on in situ stress measurements of Fe/GaAs(001), which enlighten the dynamics of the interface formation of this important magnetic metal/semiconductor system. At deposition temperatures of 300 K and 450 K, the stress evolution during growth is very similar. In Fe films thicker than 6–7 nm, the stress is compressive owing to the misfit between the lattices of Fe and GaAs. Thinner films surprisingly are dominated by a tensile stress contribution due to considerable As (and Ga) interdiffusion even at 300 K. Magnetization and in-plane anisotropy of both films are bulk-like.

Type
Research Article
Copyright
Copyright © Materials Research Society 2002

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Zhu, H. J., Ramsteiner, M., Kostial, H., Wassermeier, M., Schönherr, H.-P. and Ploog, K. H., Phys. Rev. Lett. 87, 016601 (2001).Google Scholar
2. Krebs, J. J., B. Jonker, T. and Prinz, G. A., J. Appl. Phys. 61, 2596 (1987).Google Scholar
3. Kneedler, E. M., Jonker, B. T., Thibado, P. M., Wagner, R. J., B. Shanabrook, V. and Whitman, L. J., Phys. Rev. B 56, 8163 (1997).Google Scholar
4. Gester, M., Daboo, C., Hicken, R. J., Gray, S. J., Ercole, A. and J. Bland, A. C., J. Appl. Phys. 80, 347 (1996).Google Scholar
5. Thibado, P. M., Kneedler, E., Jonker, B. T., Bennet, B. R., Shanabrook, B. V. and Whitman, L. J., Phys. Rev. B 53, R10481 (1996).Google Scholar
6. Filipe, A., Schuhl, A., and Galtier, P., Appl. Phys. Lett. 70, 129 (1997).Google Scholar
7. Zöphl, M., Brockmann, M., Köhler, M., Kreuzer, S., Schweinböck, T., Miethaner, S., Bensch, F. and Bayreuther, G., J. Magn. Magn. Mat. 175, 16 (1997).Google Scholar
8. Xu, Y. B., Kernohan, E. T. M., Freeland, D. J., Ercole, A., Tselepi, M. and Bland, J. A. C., Phys. Rev. B 58, 890 (1998).Google Scholar
9. Monchesky, T. L., Heinrich, B., Urban, R., Myrtle, K., Klaua, M. and Kirschner, J., Phys. Rev. B 60, 10242 (1999).Google Scholar
10. Chambers, S. A., Xu, F., Chen, H. W., Vitomirov, I. M., Anderson, S. B. and Weaver, J. H., Phys. Rev. B 34, 6605 (1986).Google Scholar
11. Gordon, R. A., Crozier, E. D., Jiang, D.-T., Monchesky, T. L., and Heinrich, B., Phys. Rev. B 62, 2151 (2000).Google Scholar
12. Schönherr, H.-P., Nötzel, R., Ma, W. and Ploog, K. H., J. Appl. Phys. 89, 169 (2001).Google Scholar
13. Weber, M., Koch, R. and Rieder, K. H., Phys. Rev. Lett. 73, 1166 (1994).Google Scholar
14. Wedler, G., B. Wassermann, Nötzel, R. and Koch, R., Appl. Phys. Lett. 78, 1270 (2001).Google Scholar
15. Ibach, H., Surf. Sci. Rep. 29, 193 (1997).Google Scholar
16. Sander, D., Skomski, R., Schmidthals, C., Enders, A. and Kirschner, J., Phys. Rev. Lett. 77, 2566 (1996).Google Scholar
17. Wyckoff, R. W. G., Crystal Structures, 2nd edition, Vol. 1, Interscience Publishers, John Wiley & Sons, New York, 1963.Google Scholar
18. Schell-Sorokin, A. J. and Tromp, R. M., Surf. Sci. 319, 110 (1994).Google Scholar