Hostname: page-component-8448b6f56d-sxzjt Total loading time: 0 Render date: 2024-04-24T16:30:09.762Z Has data issue: false hasContentIssue false

Equivariant smoothing of piecewise linear manifolds

Published online by Cambridge University Press:  13 March 2017

CHRISTIAN LANGE*
Affiliation:
Mathematisches Institut der Universität zu Köln, Weyertal 86-90, 50931 Köln, Germany e-mail: clange@math.uni-koeln.de

Abstract

We prove that every piecewise linear manifold of dimension up to four on which a finite group acts by piecewise linear homeomorphisms admits a compatible smooth structure with respect to which the group acts smoothly.

Type
Research Article
Copyright
Copyright © Cambridge Philosophical Society 2017 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

[1] Bourguignon, J. P. and Ezin, J. P. Scalar curvature functions in a conformal class of metrics and conformal transformations. Trans. Amer. Math. Soc. 301 (1987), 723736.Google Scholar
[2] Cerf, J. Sur les diffomorphismes de la sphère de dimension trois (Γ4 = 0). Lecture Notes in Math. no. 53 (Springer-Verlag, Berlin-New York, 1968), xii+133 pp.Google Scholar
[3] Chern, S. An elementary proof of the existence of isothermal parameters on a surface. Proc. Amer. Math. Soc. 6 (1955), 771782.Google Scholar
[4] Davis, M. W. Lectures on orbifolds and reflection groups. Adv. Lect. Math. 16 (2011), 6393.Google Scholar
[5] Dinkelbach, J. and Leeb, B. Equivariant Ricci flow with surgery and applications to finite group actions on geometric 3-manifolds. Geom. Topol. 13 (2009), 11291173.Google Scholar
[6] Forster, O. Lectures on Riemann surfaces. Graduate Texts in Math. (Springer–Verlag, New York–Berlin, 1981).Google Scholar
[7] Hatcher, A. Algebraic topology (Cambridge University Press, Cambridge, 2002).Google Scholar
[8] Hirsch, M. W. and Mazur, B. Smoothings of piecewise linear manifolds. Annals of Math. Stud. no. 80 (Princeton University Press, Princeton, N. J.; University of Tokyo Press, Tokyo, 1974).Google Scholar
[9] Hudson, J. F. P. Piecewise linear topology. University of Chicago Lecture Notes (W. A. Benjamin, Inc., New York-Amsterdam, 1969).Google Scholar
[10] Illman, S. Smooth equivariant triangulations of G-manifolds for G a finite group. Math. Ann. 233 (1978), 199220.Google Scholar
[11] Kervaire, M. A. and Milnor, B. J. W. Groups of homotopy spheres. I. Ann. of Math. (2) 77 (1963), 504537.Google Scholar
[12] Kirby, R. C. and Siebenmann, L. C. Foundational essays on topological manifolds, smoothings and triangulations. Ann. Math. Stud. no. 88 (Princeton University Press, Princeton, N.J.; University of Tokyo Press, Tokyo, 1977).Google Scholar
[13] Kwasik, S. and Lee, L. B. Locally linear actions on 3-manifolds. Math. Proc. Camb. Phil. Soc. 104 (1988), 253260.Google Scholar
[14] Lange, Ch. and Mikhaîlova, M. A. Classification of finite groups generated by reflections and rotations. Transform. Groups 21 (2016), 11551201.Google Scholar
[15] Lange, Ch. Characterization of finite groups generated by reflections and rotations. J. Topol. doi:10.1112/jtopol/jtw020.Google Scholar
[16] Lange, Ch. Some results on orbifold quotients and related objects. KUPS - Kölner Universitäts Publikations Server (2016).Google Scholar
[17] Mani, P. Automorphismen von polyedrischen Graphen. Math. Ann. 192 (1971), 279303.Google Scholar
[18] Milnor, J. Lectures on the h-cobordism theorem (Princeton University Press, Princeton, N.J., 1965).Google Scholar
[19] Moise, E. E. Geometric topology in dimensions 2 and 3. Graduate Texts in Math. vol. 47 (Springer–Verlag, New York–Heidelberg, 1977).Google Scholar
[20] Munkres, J. R. Elementary differential topology. Lectures given at Massachusetts Institute of Technology, Fall (Princeton University Press, Princeton, N.J., 1966).Google Scholar
[21] Rolfsen, D. Knots and links. Mathematics Lecture Series, no. 7 (Publish or Perish, Inc., Berkeley, California, 1976).Google Scholar
[22] Rourke, C. P. and Sanderson, B. J. Introduction to piecewise-linear topology. Ergeb. Math. Grenzgeb. Band 69, (1972).Google Scholar
[23] Thurston, W. P. Three-dimensional geometry and topology. vol. 1 (Princeton Mathematical Series, 1997).Google Scholar
[24] Whitehead, J. On C 1 complexes. Annals of Math. 41 (1940), 809832.Google Scholar
[25] Zimmermann, B. P. On finite groups acting on spheres and finite subgroups of orthogonal groups. Sib. Èlektron. Mat. Izv. 9 (2012), 112.Google Scholar