Hostname: page-component-76fb5796d-wq484 Total loading time: 0 Render date: 2024-04-25T08:31:09.618Z Has data issue: false hasContentIssue false

Mechanisms overview of Thermocompression Process for Copper Metal Bonding

Published online by Cambridge University Press:  05 June 2013

Paul Gondcharton
Affiliation:
CEA, LETI, MINATEC Campus, F-38054 Grenoble, France
Floriane Baudin
Affiliation:
CEA, LETI, MINATEC Campus, F-38054 Grenoble, France
Lamine Benaissa
Affiliation:
CEA, LETI, MINATEC Campus, F-38054 Grenoble, France
Bruno Imbert
Affiliation:
CEA, LETI, MINATEC Campus, F-38054 Grenoble, France
Get access

Abstract

Wafer level metal bonding involving copper material is widely used to achieve 3D functional integration of ICs and ensure effective packaging sealing for various applications. In this paper we focus on thermocompression bonding technology where temperature and pressure are used in parallel to assist the bonding process. More specifically a broad range of conditions was explored and interesting results were observed and are reported. Indeed, despite a relatively high roughness, the presence of a native oxide and the lack of surface preparation, there still exists a process window where wafer level bonding is allowed. In these conditions, limiting the bonding mechanisms to basic copper diffusion is no longer satisfactory. In this study, a specific scenario inspired by both wafer bonding and metal welding state of the art is put forward. Accordingly, pure copper diffusion through the bonding interface is lined with plastic deformation and metallic oxide fracture. In addition, polycrystalline film deformation due to thermomechanical stress is highlighted and grain growth and voiding formation are observed and confirmed.

Type
Articles
Copyright
Copyright © Materials Research Society 2013 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Wolffenbuttel, R. F. and Wise, K. D., Sensors and Actuators A: Physical 43, 13 (1994).CrossRefGoogle Scholar
Sillon, N., Astier, A., Boutry, H., and al., in IEDM 2008 (2008).Google Scholar
Fan, J., Lim, D. F., Peng, L., and al., Electrochem. Solid-State Lett., 14, 11 (2011).CrossRefGoogle Scholar
Rieutord, F., Moriceau, H., Beneyton, R., and al., ECS Trans., 3, 6, (2006).Google Scholar
Radu, I., Landru, D., Gaudin, G., and al., in 3D Systems Integration Conference (3DIC)(2010)Google Scholar
Gueguen, P., Cioccio, L. D., Gergaud, P., and al., J. Electrochem. Soc., 156, 10 (2009).CrossRefGoogle Scholar
Baudin, F., Cioccio, L. D., Delaye, V., and al., Microsyst Technol, (2012).Google Scholar
Dargent, L., Bogumilowicz, Y., Renault, O., and al., J. Electroch. Soc., 158, 3 (2011).CrossRefGoogle Scholar
Aspar, B., Jalaguier, E., Mas, A., and al., Electronics Letters, 35, 12 (1999).CrossRefGoogle Scholar
Di Cioccio, L., Gueguen, P., Grouiller, E., and al., in ECTC (2010)Google Scholar
Kerdiles, S., Letertre, F., Morales, C., and al., U.S. Patent No.72 327 391 (9 juin 2007).Google Scholar
Tsau, C. H., Spearing, S. M., and Schmidt, M. A., J. Microelectromech. Sys., 13, 6 (2004).CrossRefGoogle Scholar
Shimatsu, T., Mollema, R. H., Monsma, D., and al., J. Vac. Sc. & Tech. A: 16, 4 (1998).Google Scholar
Straessle, R., Pétremand, Y., Briand, D., and al., Proc. Eng., 25 (2011).CrossRefGoogle Scholar
Leong, H. L., PhD Thesis, 2008.Google Scholar
Tadepalli, R., PhD Thesis, 2007.Google Scholar
Made, R. I., Gan, C. L., Yan, L., and al., Acta Materialia, 60, 2 (2012).CrossRefGoogle Scholar
Chen, K. N., Tan, C. S., Fan, A., et Reif, R., Electrochem. Solid-State Lett., 7, 1 (2004).Google Scholar
Ang, X. F., Liu, H. P., Tan, Y. L., and al., in EPTC (2010)Google Scholar
Kim, J.-W., Jeong, M.-H., et Park, Y.-B., Microelectronic Engineering, 89 (2012).Google Scholar
Jang, E.-J., Hyun, S., Lee, H.-J., and al., Journal of Elec. Mater., 38, 12 (2009).CrossRefGoogle Scholar
Tan, C. S., Chen, K. N., Fan, A., and al., Journal of Elec. Mater., 34, 12 (2005).Google Scholar
Kim, J.-W., Kim, K.-S., Lee, H.-J., and al., IPFA (2011)Google Scholar
Suga, T., Yuuki, F., and Hosoda, N., in IEMT/IMC Symposium (1997).Google Scholar
Peng, L., Li, H., Lim, D. F., and al., IEEE Transactions on Electron Devices, 58, 8 (2011).Google Scholar
Mohamed, H. A. and Washburn, J., Weld., J. (Miami) (1975).Google Scholar
Bay, N., American Welding Society, 62 (1983).Google Scholar
Holloway, K., Fryer, P. M., Cabral, C., and al., Journal of Applied Physics, 71, 11 (1992).CrossRefGoogle Scholar
Kang, S. H., Obeng, Y. S., Decker, M. A., and al., 30, 12, (2001).CrossRefGoogle Scholar
Tan, C. S., Reif, R., Theodore, N. D., and al., Applied Physics Letters, 87, 20 (2005).Google Scholar
Chen, K. N., Fan, A., Tan, C. S., and al., Journal of Elec Materi, 32, 12 (2003).Google Scholar
Chen, K. N., Fan, A., and al., Journal of Materials Science, 37, 16 (2002).Google Scholar
Jang, E.-J., Kim, J.-W., Kim, B., and al., Met. Mater. Int., 17, 1 (2011).Google Scholar
Chang, Y. A. and Himmel, L., Journal of Applied Physics, 37, 9 (1966).Google Scholar
Roy, R., Agrawal, D. K., and McKinstry, H. A., Ann. Rev. Mater. Sci., 19, 1 (1989).CrossRefGoogle Scholar
Humphreys, F. J. and Hatherly, M., Recrystallization and Related Annealing Phenomena. (Elsevier, 2004).Google Scholar
Cocke, D. L., Schennach, R., Hossain, M. A., and al., Vacuum, 79, 12 (2005).CrossRefGoogle Scholar