Hostname: page-component-8448b6f56d-sxzjt Total loading time: 0 Render date: 2024-04-18T18:25:36.482Z Has data issue: false hasContentIssue false

Reliability of visible reflectance spectroscopy in discriminating between pasture and stall-fed lambs from thin and fat-tailed sheep breeds in dry and hot environment

Published online by Cambridge University Press:  07 May 2019

H. Hajji*
Affiliation:
Institut des régions Arides, IRA-Mednine, Laboratoire d’élevage et de la faune sauvage, Route du Djorf Km 22.5, 4100 Mednine, Tunisia University of Carthage, INRA-Tunisie, Laboratoire de Productions Animales et Fourragères, rue Hédi Karray, 2049 Ariana, Tunisia
S. Prache
Affiliation:
Institut National de la Recherche Agronomique, INRA, UMR1213 Herbivores, F-63122 Saint-Genès-Champanelle, France
D. Andueza
Affiliation:
Institut National de la Recherche Agronomique, INRA, UMR1213 Herbivores, F-63122 Saint-Genès-Champanelle, France
S. Smeti
Affiliation:
University of Carthage, INRA-Tunisie, Laboratoire de Productions Animales et Fourragères, rue Hédi Karray, 2049 Ariana, Tunisia
M. Mahouachi
Affiliation:
University of Jendouba, ESAK, Route de Dahmani-Boulifa 7100 Le Kef, Tunisia
N. Atti
Affiliation:
University of Carthage, INRA-Tunisie, Laboratoire de Productions Animales et Fourragères, rue Hédi Karray, 2049 Ariana, Tunisia
Get access

Abstract

Considering the additional market value of pasture meat, many authentication methods were developed to discriminate it from meat produced in conventional systems. The visible reflectance spectroscopy technique has proved its efficiency under European conditions and breeds. The present study tested the reliability of this method to discriminate between pasture-fed (P) and stall-fed (S) lambs under North African conditions and investigated the effect of feeding system (FS) (P v. S) and breed (Barbarine; Queue Fine de l’Ouest; and Noire de Thibar) on weight and colour of perirenal, subcutaneous and caudal fat. A total of 18 P and 18 S lambs were used with 6 P and 6 S lambs for each breed. The colour and the reflectance spectrum of different fat tissues were measured. The FS affected weights of all fat tissues and all colour parameters of perirenal and subcutaneous fat (P ≤ 0.01); it almost affected redness and yellowness of caudal fat (P ≤ 0.05; P ≤ 0.01). In all adipose tissues, lightness was higher and both redness and yellowness were lower for S lambs than P lambs. The breed affected weight, lightness and redness of perirenal fat and weight and redness of subcutaneous fat with significant interaction with FS for subcutaneous fat data. To discriminate P lambs from S lambs, the reflectance spectrum of perirenal, subcutaneous and caudal fat at wavelengths between 450 and 510 nm (Method 1, M1) or at wavelengths between 400 and 700 nm using partial least squares discriminative analysis as a classification method (Method 2, M2) were used. M2 yielded to a higher proportion of correctly classified lambs compared with M1 (P = 0.001). The proportion of correctly classified lambs using M2 was 76.4, 75.0 and 80.0% for perirenal, subcutaneous and caudal fat for P lambs and 83.3, 76.4 and 100.0% for S lambs. Despite lower reliability in comparisons to European researches, this study confirmed the efficiency of visible reflectance spectroscopy technique applied on perirenal fat in feeding systems authentication under North African conditions and spotted the caudal fat as a new support for better classification of fat-tailed breeds.

Type
Research Article
Copyright
© The Animal Consortium 2019 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Association of Official Analytical Chemists 1990. Official methods of analysis of the AOAC, 15th edition. AOAC, Washington, DC, USA.Google Scholar
Atti, N and Abdouli, H 2001. Effets du niveau du concentré sur les performances bouchères des agneaux de race Barbarine conduits au pâturage ou en bergerie. Annales INRAT 75, 239250.Google Scholar
Atti, N and Bocquier, F 1999. Adaptation des brebis Barbarine à l’alternance sous-nutrition-réalimentation: effets sur les tissus adipeux. Annales de Zootechnie 48, 189198.10.1051/animres:19990304CrossRefGoogle Scholar
Atti, N and Khaldi, G 1989. Caractéristiques de croissance chez des agneaux de trois races Tunisiennes. Rapport EUR 11, 375381.Google Scholar
Bouazizi, A and Majdoub, A 1999. Prédiction des quantités ingérées et de la digestibilité du régime sélectionné par des ovins sur parcours semi-aride tunisien. Fourrages 157, 177187.Google Scholar
Carrasco, S, Panea, B, Ripoll, G, Sanz, A and Joy, M 2009. Influence of feeding systems on cortisol levels, fat color and instrumental meat quality in light lambs. Meat Science 83, 5056.CrossRefGoogle ScholarPubMed
Colomer-Rocher, F, Dumont, BL and Murillo, FNL 1972. Desccripcion del despiece ovino aragones y definicion de un despiece de referencia normalizado. Annales INIA Seria Production Animale 3, 79108.Google Scholar
de Oliveira, L, Carvalho, PCF and Prache, S 2012. Fat spectro-colorimetric characteristics of lambs switched from a low to a high dietary carotenoid level. Meat Science 92, 644650.CrossRefGoogle ScholarPubMed
Devincenzi, T, Prunier, A, Meteau, K and Prache, S 2019. How does barley supplementation in lambs grazing alfalfa affect meat sensory quality and authentication? Animal 13, 427434.10.1017/S1751731118001477CrossRefGoogle ScholarPubMed
Dian, PHM, Andueza, D, Barbosa, CMP, Amoureux, S, Jestin, M, Carvalho, PCF, Prado, IN and Prache, S 2007a. Methodological developments in the use of visible reflectance spectroscopy for discriminating pasture-fed from concentrate fed lamb carcasses. Animal 1, 11981208.10.1017/S175173110700047XCrossRefGoogle ScholarPubMed
Dian, PHM, Chauveau-Duriot, MB, Prado, IN and Prache, S 2007b. A dose response study relating the concentration of carotenoid pigments in blood and reflectance spectrum characteristics of fat to carotenoid intake level in sheep. Journal of Animal Science 85, 30543061.10.2527/jas.2006-477CrossRefGoogle Scholar
Goering, HK and Van Soest, PJ 1970. Forage Fiber Analysis (Apparatus Reagents, Procedures and Some Applications). Agriculture Handbook Department of Agriculture, Washington DC, USA.Google Scholar
Gesta, S, Tseng, YH and Ronald Kahn, C, 2007. Developmental origin of fat: tracking obesity to its source. Cell 131, 242256.10.1016/j.cell.2007.10.004CrossRefGoogle ScholarPubMed
Hajji, H 2010. Caractérisation et estimation in vivo par la méthode ultrason de la composition des carcasses des agneaux lourds des trois races ovines à viande en Tunisie, Master Memory, National Agricultural Institute of Tunisia, Mahrajen city, Tunis, Tunisia.Google Scholar
Hajji, H, Joy, M, Ripoll, G, Smeti, S, Mekki, I, MoliniGahete, F, Mahouachi, M and Atti, N 2016a. Meat physicochemical properties, fatty acid profile, lipid oxidation and sensory characteristics from three North African lamb breeds as influenced by concentrate or pasture finishing diets. Journal of Food Composition and Analysis 48, 102110.10.1016/j.jfca.2016.02.011CrossRefGoogle Scholar
Hamdi, H, Majdoub-Mathlouthi, L, Picard, B, Listrat, A, Durand, D, Znaidi, IA and Kraiem, K 2016. Carcass traits, contractile muscle properties and meat quality of grazing and feedlot Barbarine lamb receiving or not olive cake. Small Ruminant Research 145, 8593.10.1016/j.smallrumres.2016.10.028CrossRefGoogle Scholar
Hood, RL and Allen, CE 1997. Cellularity of porcine adipose tissue: effects of growth and adiposity. Journal of Lipid Science 18, 275284.Google Scholar
Huang, Y, Andueza, D, Oliveira, L, Zawadzki, F and Prache, S 2015. Visible spectroscopy on carcass fat combined with chemometrics to distinguish pasture-fed, concentrate-fed and concentrate-finished pasture-fed lambs. Meat Science 101, 512.10.1016/j.meatsci.2014.10.024CrossRefGoogle Scholar
Kashan, NEJ, Manafi Azar, GH, Afzalzadeh, A and Salehi, A 2005. Growth performance and carcass quality of fattening lambs from fat-tailed and tailed sheep breeds. Small Ruminant Research 60, 267271.10.1016/j.smallrumres.2005.01.001CrossRefGoogle Scholar
Macari, S, Graulet, B, Andueza, D and Prache, S, 2017. Nitrogen stable isotope and carotenoid pigments signatures in the meat as tools to trace back the diet: comparison between two sheep breeds. Small Ruminant Research 153, 107113.10.1016/j.smallrumres.2017.05.013CrossRefGoogle Scholar
Majdoub-Mathlouthi, L, Said, B and Kraiem, K 2015. Carcass traits and meat fatty acid composition of Barbarine lambs reared on rangelands or indoors on hay and concentrate. Animal 12, 20652071.10.1017/S1751731115001731CrossRefGoogle Scholar
Mark, GL and Dean, AK 2005. Air temperature affect biomass and carotenoid pigment accumulation in kale and Spinach grown in a controlled environment. Hortsciene 40, 20262030.Google Scholar
Prache, S, Huang, Y and Andueza, D 2018. To what extent is a breed-specific database necessary to differentiate meat from pasture-fed and stall-fed lambs using visible spectroscopy? Animal 12, 16821689.CrossRefGoogle Scholar
Prache, S, Larue, A, Ballet, J, Jailler, R, Coustet, C, Teuma, JB, Pourrat, J and Andueza, D 2010. Ability of visible spectroscopy to authenticate pasture fed lambs in three breeds. In Proceedings of the 23rd General Meeting of the European Grassland Federation, August 29—September 2 2010, Kiel, Germany, pp. 610–612.Google Scholar
Prache, S, Priolo, A and Grolier, P 2003a. Persistence of carotenoid pigments in the blood of concentrate-finished grazing sheep: its significance for the traceability of grass-feeding. Journal of Animal Science 81, 360367.10.2527/2003.812360xCrossRefGoogle ScholarPubMed
Prache, S, Priolo, A and Grolier, P 2003b. Effect of concentrate finishing on the carotenoid content of perirenal fat in grazing sheep: its significance for discriminating grass-fed, concentrate-fed and concentrate-finished grazing lambs. Animal Science 77, 225234.10.1017/S1357729800058963CrossRefGoogle Scholar
Prache, S, Priolo, A, Tournadre, H, Jailler, R, Dubroeucq, H, Micol, D and Martin, B 2002. Traceability of grass-feeding by quantifying the signature of carotenoid pigments in herbivores meat, milk and cheese. In Proceedings of the 19th General Meeting of the European Grassland Federation, 27–30 May 2002, La Rochelle, France, pp. 1126–1127.Google Scholar
Prache, S and Thériez, M 1999. Traceability of lamb production systems: carotenoids in plasma and adipose tissue. Animal Science 69, 2936.10.1017/S1357729800051067CrossRefGoogle Scholar
Priolo, A, Micol, D, Agabriel, J, Prache, S and Dransfield, E 2002a. Effect of grass or concentrate feeding systems on lamb carcass and meat quality. Meat Science 62, 179185.CrossRefGoogle ScholarPubMed
Priolo, A, Prache, S, Micol, D and Agabriel, J 2002b. Reflectance spectrum of adipose tissue to trace grass-feeding in sheep: influence of measurement site and shrinkage time after slaughter. Journal of Animal Science 80, 886891.10.2527/2002.804886xCrossRefGoogle ScholarPubMed
Rekik, M, Aloulou, R and Ben Hamouda, M 2006. Small ruminant breeds of Tunisia. In Characterization of small ruminant breeds in West Asia and North Africa (eds. Iňigeuz, L., ICARDA), pp. 91140. Cambridge University Press, Cambridge, UK.Google Scholar
Renerre, M 1981. La couleur de la viande et sa mesure. Viandes et Produits Carnés 2, 1016.Google Scholar
Renerre, M 1986.Influence de facteurs biologiques et technologiques sur la couleur de la viande bovine. Bulletin Technique du CRZV de Theix, INRA 65, 4145.Google Scholar
Ripoll, G, Albertí, P and Joy, M 2012. Influence of alfalfa grazing-based feeding systems on carcass fat color and meat quality of light lambs. Meat Science 90, 457464.10.1016/j.meatsci.2011.09.007CrossRefGoogle ScholarPubMed
Ripoll, G, Joy, M, Muñoz, F and Albertí, P 2008. Meat and fat color as a tool to trace grass-feeding systems in light lamb production. Meat Science 80, 239248.CrossRefGoogle ScholarPubMed
Rousset-Akrim, S, Young, OA and Berdague, JL 1997. Diet and growth effects in panel assessment of sheep meat odor and flavor. Meat Science 45, 169181.CrossRefGoogle Scholar
Statistical Analysis Systems Institute 1999. SAS/STAT user’s guide, version 8. SAS Institute Inc., Cary, NC, USA.Google Scholar
Swatland, HJ 1989. Carotene reflectance and the yellowness of bovine adipose tissue measured with a portable fibre-optic spectrophotometer. Journal of Science of Food and Agriulture 46, 195200.10.1002/jsfa.2740460207CrossRefGoogle Scholar
Tothill, JC, Hargreaves, JNG, Jones, RM and Mcdonald, CK, 1992. Botanal-A comprehensive sampling and computing procedure for estimating pasture yield and composition. 1. Field sampling. Tropical Agriculture Technical Memorandum 78, 24.Google Scholar
Supplementary material: File

Hajji et al. supplementary material

Hajji et al. supplementary material 1

Download Hajji et al. supplementary material(File)
File 17 KB