Hostname: page-component-8448b6f56d-t5pn6 Total loading time: 0 Render date: 2024-04-23T16:11:41.586Z Has data issue: false hasContentIssue false

Studies of Oxygen Thermal Donor Formation Under Stress*

Published online by Cambridge University Press:  28 February 2011

Paul W. Wang
Affiliation:
Institute for the Study of Defects in SolidsPhysics Department, SUNY/Albany Albany, NY 12222USA
James W. Corbett
Affiliation:
Institute for the Study of Defects in SolidsPhysics Department, SUNY/Albany Albany, NY 12222USA
Get access

Abstract

Oxygen thermal donor formation under stress and following various pre-heat treatments was investigated by resistivity measurements. Thermal donor formation at 450°C, with and without bending stress, is monitored in p-type Cz-silicon following various heat-treatments. As has been shown by others, the thermal donor formation rate depends upon the pre-treatment of the samples. We find that the rate also depends on the stress, being faster, or slower, on the tensile side than on the compressed side depending on the pre-treatment.

Type
Research Article
Copyright
Copyright © Materials Research Society 1986

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

*

Supported in part by the DOE-JPL Flat Solar Array Program and the Mobil Foundation.

References

REFERENCES

* Supported in part by the DOE-JPL Flat Solar Array Program and the Mobil Foundation.Google Scholar
[1] Corbett, J. W., McDonald, R. S. and Watkins, G. D., J. Phys. Chem. Solid. 25(1964) 873.CrossRefGoogle Scholar
[2] Inoue, N., Osaka, J., and Wada, K., J. Electrochem. Soc. 12 (1982) 2780.Google Scholar
[3] Kaiser, W., Frisch, H. L., and Reiss, H., Phys. Rev. 112 (1958) 1546.CrossRefGoogle Scholar
[4] Capper, P., Jones, A. W., Wallhouse, E. L., and Wilkes, J. G., J. Appl. Phys. 48(1977) 1646.Google Scholar
[5] Bourret, A., Thirteenth International Conf. on Defects in Semiconductors. eds. Kimerling, L. C. and Parsey, J. M. Jr. (Met.Soc.-AIME, ny 1985) pp. 129146 Google Scholar
[6] Tan, T. Y., Gardner, E. E., and Tice, W. K., Appl. Phys. Lett. 30 (1977) 175.Google Scholar
[7] Hu, S. M., Appl. Phys. Lett. 22 (1973) 261.Google Scholar
[8] Hu, S. M., Appl. Phys. Lett. 32 (1978) 5.Google Scholar
[9] Timoshenko, S. and Goodier, J. N. in: Theory of Elasticity, 2nd ed., (McGraw-Hill,1951) p.100 Google Scholar
[10] Kondo, Y. in: Semiconductor Silicon 1981, eds. Huff, H. R., Kriegler, R.J., and Takeishi, Y. (Electrochem. Soc. NY, 1982) p. 220.Google Scholar
[11] Sze, S. M., and Irvin, J. C., Solid State Elect., 11 (1968) 599.Google Scholar
[12] Bourret, A., Thibault-Desseaux, J., Seidman, D. N., J. Appl. Phys. 55 (1984) 825.CrossRefGoogle Scholar
[13] Ponce, F. A., Yamashita, T., Hahn, S., Appl. Phys. Lett. 43 (1983) 1051.Google Scholar
[14] Lee, Y. H., Corbett, J. W., and Brower, K. L., Phys. Status Solidi (a) 41 (1977) 637.CrossRefGoogle Scholar
[15] Matsushita, Y., Kishino, S., and Kanamori, M., Jpn. J. Appl. Phys., 19 (1980) L101 Google Scholar
[16] Bean, A. R., Newman, R. C., J. Phys. Chem. Solids, 33 (1972) 255 Google Scholar