Hostname: page-component-76fb5796d-r6qrq Total loading time: 0 Render date: 2024-04-25T09:37:39.307Z Has data issue: false hasContentIssue false

A computational comparison of the speciation of uranyl D-gluconate and uranyl α-isosaccharinate complexes in aqueous solutions.

Published online by Cambridge University Press:  28 March 2012

Krishna Hassomal Birjkumar
Affiliation:
Department of Chemistry, University College London, 20 Gordon Street, London, WC1H 0AJ
Nikolas Kaltsoyannis
Affiliation:
Department of Chemistry, University College London, 20 Gordon Street, London, WC1H 0AJ
Get access

Abstract

The geometries, relative energies and spectroscopic properties of α-isosaccharinate and D-gluconate complexes of uranyl(VI) are studied computationally using density functional theory. The effect of pH is accommodated by varying the number of water and hydroxide ligands accompanying gluconate in the equatorial plane of the uranyl unit. Their relative energies are found to be pH dependent, although the energetic differences between them are not sufficient to exclude the possibility of multiple speciation. The calculated uranyl stretching frequency decreases as pH increases, in agreement with previous experimental data. Three different coordination modes are studied.

Type
Articles
Copyright
Copyright © Materials Research Society 2012

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Nirex, , Radioactive Wastes in the UK: A Summary of the 2001 Inventory, United Kingdom. Nirex Limited, Oxfordshire, (2002).Google Scholar
2. Whistler, R. and Bemiller, J., Adv.Carbohyd. Chem., (1958), 13, 289.Google Scholar
3. Vercammen, K., Glaus, M. A. and Van Loon, L. R., Radiochim. Acta, (1999), 84, 221.10.1524/ract.1999.84.4.221Google Scholar
4. Vercammen, K., Glaus, M. A. and Van Loon, L. R., Acta Chem Scand., (1999), 53, 241 10.3891/acta.chem.scand.53-0241Google Scholar
5. Vercammen, K., Glaus, M. A. and Van Loon, L. R., Radiochim. Acta, (2001), 89, 393.10.1524/ract.2001.89.6.393Google Scholar
6. Melson, G. A. and Pickerin., Wf, Aust. J. Chem., (1968), 21, 2889.10.1071/CH9682889Google Scholar
7. Sawyer, D. T. and Kula, R. J., Inorg. Chem., (1962), 1, 303.10.1021/ic50002a021Google Scholar
8. Sawyer, D. T., Chem. Rev., (1964), 64, 633.10.1021/cr60232a003Google Scholar
9. Tits, J., Wieland, E. and Bradbury, M. H., App. Geochem., (2005), 20, 2082.10.1016/j.apgeochem.2005.07.004Google Scholar
10. Baston, G. M. N., Berry, J. A., Bond, K. A., Boult, K. A., Brownsword, M. and Linklater, C. M., J. Alloy. Compd., (1994), 213, 475.10.1016/0925-8388(94)90965-2Google Scholar
11. Baston, G. M. N., Berry, J. A., Bond, K. A., Brownsword, M. and Linklater, C. M., Radiochim. Acta, (1992), 589, 349.Google Scholar
12. Baston, G. M. N., Berry, J. A., Bond, K. A., Boult, K. A. and Linklater, C. M., Radiochim. Acta, (1994), 667, 437.Google Scholar
13. Vallet, V., Moll, H., Wahlgren, U., Szabo, Z. and Grenthe, I., Inorg. Chem., (2003), 42, 1982.10.1021/ic026068sGoogle Scholar
14. Vazquez, J., Bo, C., Poblet, J. M., de Pablo, J. and Bruno, J., Inorg. Chem., (2003), 42, 6136.10.1021/ic0342393Google Scholar
15. de Jong, W. A., Apra, E., Windus, T. L., Nichols, J. A., Harrison, R. J., Gutowski, K. E. and Dixon, D. A., J. Phys. Chem. A, (2005), 109, 11568.10.1021/jp0541462Google Scholar
16. Bernhard, G., Geipel, G., Reich, T., Brendler, V., Amayri, S. and Nitsche, H., Radiochim. Acta, (2001), 89, 511.10.1524/ract.2001.89.8.511Google Scholar
17. Templeton, D. H., Zalkin, A., Ruben, H. and Templeton, L. K., Acta Crystallogr. Sect. C: Cryst. Struct. Commun., (1985), 41, 1439.10.1107/S0108270185008095Google Scholar
18. Alcock, N. W., J. Chem. Soc., Dalton Trans., (1973), 1610.10.1039/dt9730001610Google Scholar
19. Birjkumar, K. H., Bryan, N. D. and Kaltsoyannis, N., Dalton Trans., (2011), 40, 11248 10.1039/c1dt11086aGoogle Scholar
20. Zhang, Z., Helms, G., Clark, S. B., Tian, G., Zanonato, P. and Rao, L., Inorg. Chem., (2009), 48, 3814.10.1021/ic8018925Google Scholar
21. Kirkham, A. J., PhD Thesis, University of Manchester, (2008).Google Scholar
22. ADF2008.01, Theoretical Chemistry , Vrije Universiteit, Amsterdam, The Netherlands Google Scholar
23. te Velde, G., Bickelhaupt, F. M., Baerends, E. J., Guerra, C. F., van Gisbergen, S. J. A., Snijders, J. G. and Ziegler, T., J. Comput. Chem., (2001), 22, 931 10.1002/jcc.1056Google Scholar
24. Guerra, C. F., Snijders, J. G., Velde, G. and Baerends, E. J., Theor. Chem. Acc., (1998), 99, 391.Google Scholar
25. Perdew, J. P., Burke, K. and Ernzerhof, M., Phys. Rev. Lett., (1996), 77, 3865.10.1103/PhysRevLett.77.3865Google Scholar
26. Klamt, A. and Schuurmann, G., J. Chem. Soc., Perkin Trans.2, (1993), 799.10.1039/P29930000799Google Scholar
27. Klamt, A., J. Phys. Chem., (1995), 99, 2224.10.1021/j100007a062Google Scholar
28. Andreas, K. and Volker, J., J. Chem. Phys., (1996), 105, 9972 Google Scholar