Hostname: page-component-7c8c6479df-nwzlb Total loading time: 0 Render date: 2024-03-29T05:15:10.293Z Has data issue: false hasContentIssue false

Symplectic cobordisms and the strong Weinstein conjecture

Published online by Cambridge University Press:  28 February 2012

HANSJÖRG GEIGES
Affiliation:
Mathematisches Institut, Universität zu Köln, Weyertal 86–90, 50931 Köln, Germany. e-mail: geiges@math.uni-koeln.de, kai.zehmisch@math.uni-koeln.de
KAI ZEHMISCH
Affiliation:
Mathematisches Institut, Universität zu Köln, Weyertal 86–90, 50931 Köln, Germany. e-mail: geiges@math.uni-koeln.de, kai.zehmisch@math.uni-koeln.de

Abstract

We study holomorphic spheres in certain symplectic cobordisms and derive information about periodic Reeb orbits in the concave end of these cobordisms from the non-compactness of the relevant moduli spaces. We use this to confirm the strong Weinstein conjecture (predicting the existence of null-homologous Reeb links) for various higher-dimensional contact manifolds, including contact type hypersurfaces in subcritical Stein manifolds and in some cotangent bundles. The quantitative character of this result leads to the definition of a symplectic capacity.

Type
Research Article
Copyright
Copyright © Cambridge Philosophical Society 2012

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

[1]Abbas, C., Cieliebak, K. and Hofer, H.The Weinstein conjecture for planar contact structures in dimension three. Comment. Math. Helv. 80 (2005), 771793.CrossRefGoogle Scholar
[2]Albers, P., Bramham, B. and Wendl, C.On nonseparating contact hypersurfaces in symplectic 4-manifolds. Algebr. Geom. Topol. 10 (2010), 697737.CrossRefGoogle Scholar
[3]Albers, P. and Hofer, H.On the Weinstein conjecture in higher dimensions. Comment. Math. Helv. 84 (2009), 429436.CrossRefGoogle Scholar
[4]Andenmatten, M. The Weinstein conjecture and holomorphic curves in higher dimensions. Ph.D. Thesis, New York University (1999).Google Scholar
[5]Bourgeois, F., Eliashberg, Ya., Hofer, H., Wysocki, K. and Zehnder, E.Compactness results in symplectic field theory. Geom. Topol. 7 (2003), 799888.CrossRefGoogle Scholar
[6]Cieliebak, K. Subcritical Stein manifolds are split. preprint (2002), arXiv: math/0204351.Google Scholar
[7]Cieliebak, K. and Eliashberg, Ya.From Stein to Weinstein and Back – Symplectic Geometry of Affine Complex Manifolds, in preparation.Google Scholar
[8]Cieliebak, K., Hofer, H., Latschev, J. and Schlenk, F.Quantitative symplectic geometry. Dynamics, Ergodic Theory and Geometry. Math. Sci. Res. Inst. Publ. 54 (Cambridge University Press, 2007), 144.Google Scholar
[9]Cieliebak, K. and Mohnke, K.Symplectic hypersurfaces and transversality in Gromov–Witten theory. J. Symplectic Geom. 5 (2007), 281356.CrossRefGoogle Scholar
[10]Dörner, M. Planar contact structures, Giroux torsion and the Weinstein conjecture. Diplomarbeit, Universität zu Köln (2011).Google Scholar
[11]Ekeland, I. and Hofer, H.Capacités symplectiques. C. R. Acad. Sci. Paris Sér. I Math. 307 (1988), 3740.Google Scholar
[12]Eliashberg, Ya. and Gromov, M.Convex symplectic manifolds. Several Complex Variables and Complex Geometry (Santa Cruz, CA, 1989). Proc. Sympos. Pure Math. 52, part 2 (American Mathematical Society, Providence, RI, 1991), 135162.Google Scholar
[13]Etnyre, J. B.Planar open book decompositions and contact structures. Int. Math. Res. Not. 2004, 42554267.CrossRefGoogle Scholar
[14]Floer, A., Hofer, H. and Viterbo, C.The Weinstein conjecture in $P\times\C^l$. Math. Z. 203 (1990), 469482.CrossRefGoogle Scholar
[15]Frauenfelder, U., Ginzburg, V. and Schlenk, F.Energy capacity inequalities via an action selector. Geometry, Spectral Theory, Groups and Dynamics. Contemp. Math. 387 (American Mathematical Society, Providence, RI, 2005), 129152.CrossRefGoogle Scholar
[16]Frauenfelder, U. and Schlenk, F.Hamiltonian dynamics on convex symplectic manifolds. Israel J. Math. 159 (2007), 156.CrossRefGoogle Scholar
[17]Geiges, H.An Introduction to Contact Topology. Cambridge Stud. Adv. Math. 109 (Cambridge University Press, 2008).CrossRefGoogle Scholar
[18]Geiges, H. and Zehmisch, K. How to recognise a 4-ball when you see one. preprint (2011), arXiv: 1104.1543.Google Scholar
[19]Grauert, H.On Levi's problem and the imbedding of real-analytic manifolds. Ann. of Math. (2) 68 (1958), 460472.CrossRefGoogle Scholar
[20]Gromov, M.Pseudoholomorphic curves in symplectic manifolds. Invent. Math. 82 (1985), 307347.CrossRefGoogle Scholar
[21]Hofer, H.Pseudoholomorphic curves in symplectizations with applications to the Weinstein conjecture in dimension three. Invent. Math. 114 (1993), 515563.CrossRefGoogle Scholar
[22]Hofer, H. and Viterbo, C.The Weinstein conjecture in cotangent bundles and related results. Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4) 15 (1988), 411445.Google Scholar
[23]Hofer, H. and Zehnder, E.Symplectic Invariants and Hamiltonian Dynamics. Birkhäuser Adv. Texts - Basler Lehrbücher (Birkhäuser Verlag, Basel, 1994).CrossRefGoogle Scholar
[24]Jung, H.Ueber die kleinste Kugel, die eine räumliche Figur einschliesst. J. Reine Angew. Math. 123 (1901), 241257.Google Scholar
[25]McDuff, D.Symplectic manifolds with contact type boundaries. Invent. Math. 103 (1991), 651671.CrossRefGoogle Scholar
[26]McDuff, D. and Salamon, D.J-holomorphic Curves and Symplectic Topology. Amer. Math. Soc. Colloq. Publ. 52 (American Mathematical Society, Providence, RI, 2004).Google Scholar
[27]Niederkrüger, K.The plastikstufe – a generalization of the overtwisted disk to higher dimensions. Algebr. Geom. Topol. 6 (2006), 24732508.CrossRefGoogle Scholar
[28]Niederkrüger, K. and Rechtman, A.The Weinstein conjecture in the presence of submanifolds having a Legendrian foliation. J. Topol. Anal. 3 (2011), 405421.CrossRefGoogle Scholar
[29]Nijenhuis, A. and Woolf, W. B.Some integration problems in almost-complex and complex manifolds. Ann. of Math. (2) 77 (1963), 424489.CrossRefGoogle Scholar
[30]Oancea, A. and Viterbo, C.On the topology of fillings of contact manifolds and applications. Comment. Math. Helv. 87 (2012), 4169.CrossRefGoogle Scholar
[31]Thom, R.Quelques propriétés globales des variétés différentiables. Comment. Math. Helv. 28 (1954), 1786.CrossRefGoogle Scholar
[32]Viterbo, C.A proof of Weinstein's conjecture in $\R^{2n}$. Ann. Inst. H. Poincaré Anal. Non Linéaire 4 (1987), 337356.CrossRefGoogle Scholar
[33]Viterbo, C.Exact Lagrange submanifolds, periodic orbits and the cohomology of free loop spaces. J. Differential Geom. 47 (1997), 420468.CrossRefGoogle Scholar
[34]Viterbo, C.Functors and computations in Floer homology with applications I. Geom. Funct. Anal. 9 (1999), 9851033.CrossRefGoogle Scholar
[35]Weinstein, A.On the hypotheses of Rabinowitz' periodic orbit theorems. J. Differential Equations 33 (1979), 336352.CrossRefGoogle Scholar
[36]Yau, M.-L.Cylindrical contact homology of subcritical Stein-fillable contact manifolds. Geom. Topol. 8 (2004), 12431280.CrossRefGoogle Scholar