Hostname: page-component-76fb5796d-zzh7m Total loading time: 0 Render date: 2024-04-25T08:29:25.761Z Has data issue: false hasContentIssue false

Effect of Carbon on Diffusion of Boron in SiGe between 940 – 1050 °C

Published online by Cambridge University Press:  17 March 2011

Mudith S. A. Karunaratne
Affiliation:
Materials Research Group, School of Engineering Sciences andUniversity of Southampton, Highfield, Southampton SO17 1BJ, UK
Janet M. Bonar
Affiliation:
School of Electronics & Computer Science, University of Southampton, Highfield, Southampton SO17 1BJ, UK
Jing Zhang
Affiliation:
Blackett Laboratory, Department of Physics, Imperial College London, Prince Consort Road, London SW7 2BW, UK
Arthur F. W. Willoughby
Affiliation:
Materials Research Group, School of Engineering Sciences andUniversity of Southampton, Highfield, Southampton SO17 1BJ, UK
Get access

Abstract

The effect of carbon on boron diffusion was studied in Si and strained SiGe. Several types B containing matrices were grown: (i) Si, (ii) Si containing 0.1% C peak, (iii) SiGe with 11% Ge and (iv) SiGe with 11% Ge and with a 0.1% C peak, using gas-source molecular beam epitaxy (MBE). The combination of Si, Si with C, SiGe and SiGe with C matrices allowed us to separate the effects of Ge and C on B diffusivity. To ensure non-injection surface conditions, low temperature silicon dioxide (LTO) and silicon nitride layers were deposited on top of samples in that order. These samples were then rapid thermal annealed (RTA) at 940, 1000 and 1050°C in an O2 ambient.

Diffusion coefficients of B in each type of matrix were extracted by computer simulation, using SIMS profiles obtained from samples before and after the RTA treatment. Diffusion coefficient is reduced by both Ge and C, the suppression by C being more profound. The results are compared to and found to be in reasonable agreement with limited data available in literature.

Type
Research Article
Copyright
Copyright © Materials Research Society 2004

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Ashburn, Peter, Mater. Sci. Semi. Process., 4, 521, (2001).Google Scholar
2. Meyer, D. J., Webb, D. A., Ward, M. G., Sellar, J. D., Zeng, P. Y. and, Robinson, J., Mater. Sci. Semi. Process., 4, 529, (2001).Google Scholar
3. Fahey, P. M., Griffin, P. B. and, Plummer, J. D., Rev. Mod. Phys., 61(2), 289, (1989).Google Scholar
4. Jain, S. C., Schoenmaker, W., Lindsay, R., Stolk, P. A., Decoutere, S., Willander, M. and, Maes, H. E., J. Appl. Phys., 91(11), 8919, (2002).Google Scholar
5. Nishikawa, S., Tanaka, A., and Yamaji, T., Appl. Phys. Lett., 60, 2270 (1992).Google Scholar
6. Stolk, P. A., Eaglesham, D. J., Gossmann, H. J., and Poate, J. M., Appl. Phys. Lett., 66(11), 1370, (1995).Google Scholar
7. Rücker, H., Heinemann, B., Röpke, W., Kurps, R., Krüger, D., Lippert, G. and, Osten, H. J., Appl. Phys. Lett., 73(12), 1682 (1998).Google Scholar
8. Scholz, R., Gösele, U., Huh, J.-Y. and, Tan, T. Y., Appl. Phys. Lett., 72(2), 200, (1998).Google Scholar
9. Scholz, R. F., Werner, P., Gösele, U. and, Tan, T. Y., Appl. Phys. Lett., 74(3), 392, (1999).Google Scholar
10. Osten, H. J., Knoll, D. and, Rücker, H., Mater. Sci. Eng., B87, 262 (2001).Google Scholar
11. Willoughby, A. F. W. in Silicon Materials Science and Technology, edited by Huff, H. R. and Tsuya, H. and Gösele, U., (Proc. Electrochem. Soc., 98–1, 1998) 871.Google Scholar
12. Rajendran, K. and Schoenmaker, W., J. Appl. Phys., 89(2), 980, (2001).Google Scholar
13. Zangenberg, N. R., Fage-Pedersen, J., Hansen, J. Lundsgaard and Larsen, A. Nylandsted, J. Appl. Phys., 94(6), 3883, (2003).Google Scholar
14. Rücker, H. and, Heinemann, B., Solid State Electron., 44, 783, (2000).Google Scholar
15. Lever, R. F., Bonar, J. M. and Willoughby, A. F. W., J. Appl. Phys., 83(4), 1988, (1998).Google Scholar
16. Osada, K., Zaitsu, Y., Matsumoto, S., Yoshida, M., Arai, E. and Abe, T., J. Electrochem. Soc., 142(1), 202, (1995).Google Scholar
17. M. Karunaratne, S. A., Bonar, J. M. and Willoughby, A. F. W., [to be published].Google Scholar
18. Athena User's Manual, 2D Process Simulation Software, SILVACO International, 4701 Patrick Henry Drive, Bldg. 1, Santa Clara, CA 95054, USA, 2000.Google Scholar
19. Fair, R. B., in Impurity Doping Processes in Silicon, edited by Wang, F. F. Y., (North Holand, Amsterdam, The Netherlands, 1981), pp. 315.Google Scholar