Hostname: page-component-76fb5796d-skm99 Total loading time: 0 Render date: 2024-04-25T07:42:48.973Z Has data issue: false hasContentIssue false

Investigation of The Mechanical Properties and Adhesion of P.V.D. Tungsten Films on Si and Silicon Compounds by Bulge and Blister Tests

Published online by Cambridge University Press:  10 February 2011

Michel Dupeux
Affiliation:
Laboratoire de Thermodynamique et Physico-Chimie Métallurgiques (CNRS UMR 5614 / INPG / UJF), ENSEEG, B.P.75, F 38402 - Saint Martin d'Hères CEDEX (France), mdupeux@ltpcrninpg.fr
Alain Bosseboeuf
Affiliation:
Institut d'lectronique Fondamentale, (CNRS URA 0022), Université Paris-Sud, B&t. 220, F91405- Orsay CEDEX (France), alain.bosseboeuf@ief.u-psud.fr
Denis Buttard
Affiliation:
Laboratoire de Thermodynamique et Physico-Chimie Métallurgiques (CNRS UMR 5614 / INPG / UJF), ENSEEG, B.P.75, F 38402 - Saint Martin d'Hères CEDEX (France), mdupeux@ltpcrninpg.fr
Get access

Abstract

P.V.D. tungsten films deposited on silicon wafers (covered or not with a P.E.C.V.D. silicon oxide, nitride or oxynitride sublayer) were submitted to bulge and blister tests. The mechanical equilibrium and geometry of the bulged tungsten membranes is compared to various models. From this analysis, values of the residual stresses and the Young's moduli in the films are derived, and found to be consistent with previous values deduced from curvature radius measurements or other mechanical test methods, as functions of the deposition conditions. Decohesion of the films from their substrates is easily observed on the W / SiO2 / Si membranes, and the film / sublayer interfacial fracture energy is estimated about 1 J/m2. This energy increases when the sublayer is changed from SiO2 to silicon oxi-nitride and to nitride. The W / Si membranes show a much stronger adhesion than the abovementioned ones and could not be debonded before bursting.

Type
Research Article
Copyright
Copyright © Materials Research Society 1998

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1 Jensen, H.M., Eng. Fract. Mech., 40, N°3, pp. 475486 (1991).Google Scholar
2 Hohlfelder, R.J., Vlassak, J.J., Nix, W.D., Luo, H., Chidsey, C.E.D., Mat. Res. Soc. Symp. Proc. 356, pp. 585590 (1995).Google Scholar
3 Mamor, M., Dufour-Gergam, E., Finkman, L., Tremblay, G., Meyer, F. and Bouziane, K., Appl. Surf. Sci., 91, pp. 342346 (1995).Google Scholar
4 Bosseboeuf, A., Dupeux, M., Boutry, M., Bourouina, T., Bouchier, D., and Debarre, D., Microscopy, Microanalysis, Microstructure, 8 (1997), in press.Google Scholar
5 Tabata, O., Kawahata, K., Sugiyama, S. and Igarashi, I., Sensors and Actuators, 20, pp. 135141 (1989).Google Scholar
6 Small, M.K., Vlassak, J.J., Powell, S.F., Daniels, B.J. and Nix, W.D., Mat. Res. Soc. Symp. Proc., 308, pp. 159164 (1993).Google Scholar
7 Paviot, V.M., Vlassak, J.J. and Nix, W.D., Mat. Res. Soc. Symp. Proc., 356, pp. 579584 (1995).Google Scholar
8 Bonnotte, E., Delobelle, P., Bornier, L., Trollard, B. and Tribillon, G., J. Phys. III, 5, pp. 953983 (1995).Google Scholar
9 Maier-Schneider, D., Maibach, J. and Obermeier, E., J. Microelectromech. Syst., 4, N°4, pp. 238241 (1995).Google Scholar
10 Boutry, M., Doctorate thesis, Universitd Paris XI Orsay (France), 1997.Google Scholar
11 Sizemore, J., Stevenson, D.A. and Stringer, J., Mat. Res. Soc. Symp. Proc. 308, pp. 165170(1993).Google Scholar
12 Hohlfelder, R.J., Luo, H., Vlassak, J.J., Chidsey, C.E.D. and Nix, W.D., Mat. Res. Soc. Symp. Proc. 436, pp. 115120 (1997).Google Scholar