Hostname: page-component-8448b6f56d-c47g7 Total loading time: 0 Render date: 2024-04-19T16:38:29.332Z Has data issue: false hasContentIssue false

Fabrication and Properties of Epitaxial Lithium Niobate Thin Films by Combustion Chemical Vapor Deposition (CCVD)

Published online by Cambridge University Press:  17 March 2011

Yong Dong Jiang
Affiliation:
MicroCoating Technologies, 5315 Peachtree Industrial Blvd, Atlanta, GA 30341, USA
Jake McGee
Affiliation:
MicroCoating Technologies, 5315 Peachtree Industrial Blvd, Atlanta, GA 30341, USA
Todd A. Polley
Affiliation:
MicroCoating Technologies, 5315 Peachtree Industrial Blvd, Atlanta, GA 30341, USA
Robert E. Schwerzel
Affiliation:
MicroCoating Technologies, 5315 Peachtree Industrial Blvd, Atlanta, GA 30341, USA
Andrew T. Hunt
Affiliation:
MicroCoating Technologies, 5315 Peachtree Industrial Blvd, Atlanta, GA 30341, USA
Get access

Abstract

Lithium niobate has a wide variety of applications because of its excellent ferroelectric, piezoelectric and electrooptic properties. In this study, epitaxial lithium niobate thin films were deposited on c-sapphire (α-Al2O3) by the low-cost, open-atmosphere Combustion Chemical Vapor Deposition (CCVD) technique developed by MicroCoating Technologies, Inc. It was found that deposition temperature plays a critical role in determining the growth behavior and quality of the lithium niobate thin films. XRD measurements show that the lithium niobate films are epitaxial with two in-plane orientations (twin structure). A surface roughness (root mean square) of about 4 nm was obtained from the deposited film (about 200 nm thick), as measured by optical profilometry.

Type
Research Article
Copyright
Copyright © Materials Research Society 2002

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Callejo, D., Manotas, S., Serrano, M. D., Bermudez, V., Agullo-Rueda, F., and Dieguez, E., J. Crystal Growth, 226, 488 (2001)Google Scholar
2. Kakehi, Y., Okamoto, A., Sakurai, Y., Nishikawa, Y., Yotsuya, T., and Ogawa, S., Appl. Sur. Sci., 169–170, 560 (2001)Google Scholar
3. Xue, D., Betzler, K., Hesse, H., and Lammers, D., J. Phys. Chem. Solids, 62, 973 (2001)Google Scholar
4. Bouquet, V., Bernardi, M. I. B., Zanetti, S. M., Leite, E. R., and Longo, E., J. Mater. Res., 15(1), 2446 (2000)Google Scholar
5. Lee, S. H., Noh, T. W., and Lee, J. H., Appl. Phys. Lett., 68(4), 472 (1996)Google Scholar
6. Veignant, F., Gandais, M., Aubert, P., and Garry, G., J. Crystal Growth, 196, 141 (1999)Google Scholar
7. Cantelar, E., Nevado, R., Martin, G., Sanz-Garcia, J. A., Lifante, G., Cusso, F., Hernandez, M. J., and Pernas, P. L., J. Luminescence, 87–89, 1096 (2000)Google Scholar
8. Lifante, G., Cantelar, E., Munoz, J. A., Nevado, R., Sanz-Garcia, J. A., and Cusso, F., Optical Mater., 13(1), 181 (1999)Google Scholar
9. Dimos, D., and Mueller, C. H., Ann. Rev. Mater. Sci., 28, 397 (1998)Google Scholar
10. Rauber, A., in “Current Topics in Materials Science”, vol. 1, edited by Kaldis, E., (North_Holland, Amsterdam, 1978), pp. 481 Google Scholar
11. Tomov, R. I., Kabadjova, T. K., Atanasov, P. A., Tonchev, S., Kaneva, M., Zherikhin, A., and Eason, R. W., Vacuum, 58, 396 (2000)Google Scholar
12. Lu, Z., Hiskes, R, DiCarolis, S. A., Route, R. K., Feigelson, R. S., Leplingard, F., and Fouquet, J. E., J. Mater. Res., 9, 2258 (1994)Google Scholar
13. Tan, S., Gilbert, T., Hung, C. Y., Schlesinger, T. E., and Migliuolo, M., J. Appl. Phys., 79, 3548 (1996)Google Scholar
14. Park, S. K., Bae, S. C., Chio, B. J., Nam, G. H., Kim, Y. J., Kim, K. W., Jpn. J. Appl. Phys., 39, 1303 (2000)Google Scholar
15. Martin, M. J., Alfonso, J. E., Mendiola, J., Zaldo, C., Gill, D. S., Eason, R. W., Chandler, P. J., J. Mater. Res., 12, 2699 (1997)Google Scholar
16. Lin, W. Y., Huang, H., Yang, F., Schmitt, J. J., Hunt, A. T., Romanofsky, R. R., Keuls, F. W. Van, Miranda, F. A., and Mueller, C. H., Integrated Ferroelectrics, 29(1-2), A1 (2000)Google Scholar
17. Hwang, T. J., Hendrick, M. R., Shao, H., Hornis, H. G., and Hunt, A. T., Mater. Sci. Eng., A244, 91 (1998)Google Scholar
18. Hunt, A. T., Cochran, J. K., and Carter, W. B., U.S. Patent No. 5 652 021 (29 July 1997)Google Scholar
19. Hunt, A. T., and Hornis, H. G., U.S. Patent No. 6 132 653 (17 October 2000)Google Scholar