Hostname: page-component-8448b6f56d-xtgtn Total loading time: 0 Render date: 2024-04-25T06:36:18.205Z Has data issue: false hasContentIssue false

Mechanism of Ultrafast (Dis)charging of Li Ion Batteries by Heterogeneous Doping of LiFePO4

Published online by Cambridge University Press:  01 February 2011

Stefan Adams
Affiliation:
mseasn@nus.edu.sg, National University of Singapore, Materials Science and Engineering, Singapore, Singapore
R. Prasada Rao
Affiliation:
mserpr@nus.edu.sg, National University of Singapore, Materials Science and Engineering, Singapore, Singapore
Haiping Choo
Affiliation:
haipingchoo@nus.edu.sg, National University of Singapore, Materials Science and Engineering, Singapore, Singapore
Get access

Abstract

Molecular dynamics (MD) simulations with a dedicated force-field and our bond valence (BV) pathway analysis have been employed to reproduce and explain the experimentally observed ultrafast Li+ transport in surface modified LixFePO4-δ as a consequence of heterogeneous doping, i.e. the Li+ redistribution in the vicinity of the interface between LixFePO4 and a pyrophosphate glass surface layer. Over the usual working temperature range of LIBs Li+ ion conductivity in the surface modified LixFePO4 phase is enhanced by 2-3 orders of magnitude, while the enhancement practically vanishes for T > 700K. Simulations for the bulk phase reproduce the experimental conductivities and the activation energy of 0.57eV (for x ≈ 1). A layer-by-layer analysis of structurally relaxed multilayer systems indicates a continuous variation of Li+ mobility with the distance from the interface and the maximum mobility close to the interface, but Li+ diffusion rate remains enhanced (compared to bulk values) even at the center of the simulated cathode material crystallites. Our BV migration pathway analysis in the dynamic local structure models shows that the ion mobility is related to the extension of unoccupied accessible pathway regions. The change in the extent of Li redistribution across the interface with the overall Li content constitutes a fast pseudo-capacitive (dis)charging contribution.

Type
Research Article
Copyright
Copyright © Materials Research Society 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1 Arico, A.S. Bruce, P. Scrosati, B. et al. , Nat. Mater. 4, 366 (2005).Google Scholar
2 Kang, B. and Ceder, G. Nature 458, 190 (2009).Google Scholar
3 Amin, R. Maier, J. et al. , Lin, Solid State Ionics 179, 27 (2008) and 178, 1831 (2008).Google Scholar
4 Li, J. Yao, W. Martin, S. and Vaknin, D. Solid State Ionics 179, 2016 (2008).Google Scholar
5 Sata, N. Eberl, K. Eberman, K. and Maier, J. Nature 408, 946 (2000).Google Scholar
6 Adams, S. and Tan, E. S. Solid State Ionics 179, 33 (2008).Google Scholar
7 Maier, J. Nat. Mater. 4, 805 (2005); Adv. Mater. 21, 2571 (2009).Google Scholar
8 Gale, J.D. J. Chem. Soc. Faraday Trans. 93, 629 (1997).Google Scholar
9 Adams, S. softBV 0.96; http://www.softBV.net (2004).Google Scholar
10 Adams, S. J. Solid State Electrochem., in press DOI: 10.1007/s10008-010-1012-1 (2010)Google Scholar
11 Adams, S. and Rao, R. Prasada, Phys. Chem. Chem. Phys. 11 3210 (2009).Google Scholar
12 Adams, S. Solid State Ionics 177 1625 (2006).Google Scholar
13 Adams, S. and Swenson, J. Phys. Rev. B 63, 054201 (2001).Google Scholar
14 Islam, M.S. Driscoll, D.J. and Fisher, C.A.J. Chem. Mater. 17, 5085 (2005).Google Scholar
15 Maxisch, T. Zhou, F. and Ceder, G. Phys Rev B 73, 104301 (2006).Google Scholar
16 Ouyang, C.Y. Shi, S.Q. Wang, Z.X. Huang, X.J. Chen, L.Q. Phys Rev B 69, 104303 (2004).Google Scholar
17 Adams, S. J. Power Sources 159, 200 (2006).Google Scholar
18 Nishimura, S.I. Kobayashi, G. Ohoyama, K. Kanno, R. et al. ; Nat. Mater. 71, 707 (2008).Google Scholar
19 Fisher, C.A.J. Prieto, V.M.H. and Islam, M.S. Chem. Mater. 20, 5907 (2008).Google Scholar
20 Chung, S.Y. Choi, S.Y. Yamamoto, S.Y.T. Ikuhara, Y.; Phys. Rev. Lett. 100, 125502 (2008).Google Scholar
21 Chen, J. Vacchio, M.J. Wang, S. et al. , Solid State Ionics 178, 1676 (2008).Google Scholar
22 Ceder, G. and Kang, B. J Power Sources, 194, 1024 (2009).Google Scholar
23 Zaghib, K. Goodenough, J.B. Mauger, A. Julien, C. J. Power Sources 194, 1021 (2009).Google Scholar