Hostname: page-component-8448b6f56d-mp689 Total loading time: 0 Render date: 2024-04-17T14:01:32.805Z Has data issue: false hasContentIssue false

Generating functions on covering groups

Published online by Cambridge University Press:  20 February 2018

David Ginzburg*
Affiliation:
School of Mathematical Sciences, Tel Aviv University, Ramat Aviv, Tel Aviv 6997801, Israel email ginzburg@post.tau.ac.il
Rights & Permissions [Opens in a new window]

Abstract

In this paper we prove a conjecture relating the Whittaker function of a certain generating function with the Whittaker function of the theta representation $\unicode[STIX]{x1D6E9}_{n}^{(n)}$. This enables us to establish that a certain global integral is factorizable and hence deduce the meromorphic continuation of the standard partial $L$ function $L^{S}(s,\unicode[STIX]{x1D70B}^{(n)})$. In fact we prove that this partial $L$ function has at most a simple pole at $s=1$. Here, $\unicode[STIX]{x1D70B}^{(n)}$ is a genuine irreducible cuspidal representation of the group $\text{GL}_{r}^{(n)}(\mathbf{A})$.

Type
Research Article
Copyright
© The Author 2018 

1 Introduction

Let $\mathbf{A}$ denote the ring of adeles of a global field $F$ . Assume that $F$ contains a full set of $n$ th roots of unity. Let $\text{GL}_{r}^{(n)}(\mathbf{A})$ denote the $n$ -fold metaplectic cover of the group $\text{GL}_{r}(\mathbf{A})$ as constructed in [Reference Kazhdan and PattersonKP84]. Let $\unicode[STIX]{x1D70B}^{(n)}$ denote a genuine irreducible cuspidal representation of $\text{GL}_{r}^{(n)}(\mathbf{A})$ . To this representation one can attach the partial standard $L$ function, denoted by $L^{S}(s,\unicode[STIX]{x1D70B}^{(n)})$ .

The first to consider convolutions of cuspidal representations with theta representations were Bump and Hoffstein in [Reference Bump and HoffsteinBH86, Reference Bump and HoffsteinBH87]. In these papers they considered the global construction involving the cubic theta representation and established that this construction represents an $L$ function. It was their idea that in order to study the properties of the above $L$ functions, one needs to start with the well-known Rankin–Selberg convolution of two cuspidal representations of $\text{GL}_{r}(\mathbf{A})$ and $\text{GL}_{n}(\mathbf{A})$ , and adjust this construction to the covering groups.

In detail, let $\unicode[STIX]{x1D70B}^{(n)}$ be as defined above. Let $\unicode[STIX]{x1D6E9}_{n}^{(n)}$ denote the global theta representation of the group $\text{GL}_{n}^{(n)}(\mathbf{A})$ . The latter representation was constructed in [Reference Kazhdan and PattersonKP84]. Assume that $r>n$ . Then the proposed construction is given by

(1) $$\begin{eqnarray}\int _{\text{GL}_{n}(F)\backslash \text{GL}_{n}(\mathbf{A})}\int _{V_{r,n}(F)\backslash V_{r,n}(\mathbf{A})}\unicode[STIX]{x1D719}\left(v\left(\begin{array}{@{}cc@{}}g & \\ & I_{r-n}\end{array}\right)\right)\overline{\unicode[STIX]{x1D703}(g)}\unicode[STIX]{x1D713}_{V_{r,n}}(v)|\text{det}\,g|^{s-(r-n)/2}\,dv\,dg.\end{eqnarray}$$

Here $\unicode[STIX]{x1D719}$ is a vector in the space of $\unicode[STIX]{x1D70B}^{(n)}$ , and $\unicode[STIX]{x1D703}$ is a vector in the space of $\unicode[STIX]{x1D6E9}_{n}^{(n)}$ . The group $V_{r,n}$ and the character $\unicode[STIX]{x1D713}_{V_{r,n}}$ are defined in § 4. This was the starting point of [Reference Bump and FriedbergBF99]. In fact in [Reference Bump and FriedbergBF99] the authors concentrated on the case when $r<n$ , but up to some modifications as explained in [Reference Bump and FriedbergBF99, § 2], the idea is the same.

A straightforward unfolding implies that for $\text{Re}(s)$ large, integral (1) is equal to

(2) $$\begin{eqnarray}\int _{V_{n}(\mathbf{A})\backslash \text{GL}_{n}(\mathbf{A})}W_{\unicode[STIX]{x1D719}}\left(\begin{array}{@{}cc@{}}g & \\ & I_{r-n}\end{array}\right)\overline{W_{\unicode[STIX]{x1D703}}(g)}|\text{det}\,g|^{s-(r-n)/2}\,dg.\end{eqnarray}$$

Here $W_{\unicode[STIX]{x1D719}}$ denotes the Whittaker coefficient of $\unicode[STIX]{x1D719}$ , and we define $W_{\unicode[STIX]{x1D703}}$ similarly.

Since in general the Whittaker coefficient $W_{\unicode[STIX]{x1D719}}$ is not factorizable, it is not obvious that the above integral represents an Euler product. To show that it does, one needs to apply the method referred to as the ‘new way’ which was developed in [Reference Piatetski-Shapiro and RallisPR88]. See [Reference Bump and FriedbergBF99] for a discussion of and references for this method.

In our context, to deduce that integral (2) is Eulerian one proceeds in two steps. Let $F$ denote a local non-archimedean field containing a full set of $n$ th roots of unity. Let $\unicode[STIX]{x1D70B}^{(n)}$ denote a local unramified representation, and let $L(s,\unicode[STIX]{x1D70B}^{(n)})$ denote the corresponding local $L$ function. This function is defined in equation (4). The first step is to find a generating function for $L(s,\unicode[STIX]{x1D70B}^{(n)})$ . In [Reference Bump and FriedbergBF99, p. 5], such a function was introduced and was denoted by $\widetilde{\unicode[STIX]{x1D6E5}}_{s}$ . We give its definition in § 2 right after equation (4).

The second step is to use this function to compute a local integral which is obtained from integral (2), and to show that this local integral is independent of the choice of the local Whittaker function of the representation $\unicode[STIX]{x1D70B}^{(n)}$ . This is done as follows. First, one proves identity (5). This is done in [Reference Bump and FriedbergBF99, Proposition 1.1]. Here $\unicode[STIX]{x1D714}_{\unicode[STIX]{x1D70B}^{(n)}}$ , denoted by $\unicode[STIX]{x1D70E}$ in [Reference Bump and FriedbergBF99], is the unique spherical function attached to $\unicode[STIX]{x1D70B}^{(n)}$ . Then we apply the argument of [Reference Bump and FriedbergBF99, Proposition 2.1] to deduce the identity

(3) $$\begin{eqnarray}L(s,\unicode[STIX]{x1D70B}^{(n)})=\int _{V_{r}\backslash \text{GL}_{r}}W_{\unicode[STIX]{x1D70B}^{(n)}}(h)\int _{V_{r}}\widetilde{\unicode[STIX]{x1D6E5}}_{s}(vh)\unicode[STIX]{x1D713}_{V_{r}}(v)\,dv\,dh.\end{eqnarray}$$

Here $W_{\unicode[STIX]{x1D70B}^{(n)}}(h)$ is any local unramified Whittaker function associated with the representation $\unicode[STIX]{x1D70B}^{(n)}$ , normalized to equal one at the identity. The group $V_{r}$ is the maximal unipotent subgroup of $\text{GL}_{r}$ , and $\unicode[STIX]{x1D713}_{V_{r}}$ is the Whittaker character defined on $V_{r}$ . See equation (15).

Indeed, to obtain (3) from (5), we use the uniqueness of $\unicode[STIX]{x1D714}_{\unicode[STIX]{x1D70B}^{(n)}}$ . Thus, from this uniqueness we have $\int _{K_{r}}W_{\unicode[STIX]{x1D70B}^{(n)}}(kh)\,dk=\unicode[STIX]{x1D714}_{\unicode[STIX]{x1D70B}^{(n)}}(h)W_{\unicode[STIX]{x1D70B}^{(n)}}(e)$ where $W_{\unicode[STIX]{x1D70B}^{(n)}}$ is any Whittaker function such that $W_{\unicode[STIX]{x1D70B}^{(n)}}(e)\neq 0$ . Here $K_{r}$ is the maximal compact subgroup of $\text{GL}_{r}$ , and if $|n|_{F}=1$ it can be viewed as a subgroup of $\text{GL}_{r}^{(n)}$ . See § 2. Assuming that $W_{\unicode[STIX]{x1D70B}^{(n)}}(e)=1$ , we plug this into integral (5), change variables in $h$ , and we obtain integral (3).

Thus we are reduced to the computation of the Whittaker function of $\widetilde{\unicode[STIX]{x1D6E5}}_{s}$ and relating this computation to the local corresponding integral of (2). This is done in [Reference Bump and FriedbergBF99] for the cases $r=2,3$ and arbitrary $n$ . The general case is conjectured in [Reference Bump and FriedbergBF99, Conjecture 1.2]. This conjecture is stated in our notation as identities (20) when $r<n$ , and (28) when $r\geqslant n$ .

In this paper we prove these two identities, and hence prove [Reference Bump and FriedbergBF99, Conjecture 1.2]. To do this we give a different realization for the function $\widetilde{\unicode[STIX]{x1D6E5}}_{s}$ . This realization makes the proof of the stated conjecture relatively simple. The new realization is described in § 2 and is given by a certain unique functional defined on the local theta representation $\unicode[STIX]{x1D6E9}_{nr}^{(n)}$ . This last representation is defined on the group $\text{GL}_{nr}^{(n)}$ . We then use this functional to define a function on the group $\text{GL}_{nr}^{(n)}$ , which we denote by $W_{nr}^{(n)}(h)$ . Here $h\in \text{GL}_{nr}^{(n)}$ . Restricting to the group $\text{GL}_{r}^{(n)}$ , we obtain a function on that group which we use to give the new expression for $\widetilde{\unicode[STIX]{x1D6E5}}_{s}$ . Thus our result contains two parts. The first is to prove that the function $W_{nr}^{(n)}(h)$ restricted to $\text{GL}_{r}^{(n)}$ is indeed the generating function for the standard $L$ function. This we do in Proposition 2. The second, and the main result of this paper, is to obtain the desired expression for the Whittaker function of the generating function. This we do in Theorem 2, which is [Reference Bump and FriedbergBF99, Conjecture 1.2]. In both cases the computations are quite straightforward and are done by a repeated application of Lemma 1 and Corollary 1 stated and proved in § 2.1.

As mentioned above, the global result and some of the computations done in [Reference Bump and FriedbergBF99] assume that $r<n$ . This is just a technical point. The authors of [Reference Bump and FriedbergBF99] were well aware that their construction works for all $r$ and $n$ . To complete their result, in the last section we give some details in the other two cases, that is, when $r>n$ and $r=n$ .

To summarize, combining [Reference Bump and FriedbergBF99] with our result, we have the following theorem.

Theorem 1. Let $\unicode[STIX]{x1D70B}^{(n)}$ denote an irreducible cuspidal representation of the group $\text{GL}_{r}^{(n)}(\mathbf{A})$ . Then the partial $L$ function $L^{S}(s,\unicode[STIX]{x1D70B}^{(n)})$ has a meromorphic continuation to the whole complex plane. When $r\neq n$ this partial $L$ function is holomorphic. When $r=n$ it can have at most a simple pole at $s=1$ .

As a first remark we mention that in fact we do expect that the partial $L$ function $L^{S}(s,\unicode[STIX]{x1D70B}^{(n)})$ will also be holomorphic in the case when $r=n$ . From the global integral given in § 4, see integral (26), we deduce that if this $L$ function has a simple pole at $s=1$ , then $\unicode[STIX]{x1D70B}^{(n)}$ will be isomorphic to $\unicode[STIX]{x1D6E9}_{n}^{(n)}$ . This we believe cannot happen.

Second, it is worthwhile mentioning that one can extend the above global constructions in two ways. First, one can replace the representation $\unicode[STIX]{x1D6E9}_{n}^{(n)}$ by the representation $\unicode[STIX]{x1D6E9}_{n,\unicode[STIX]{x1D712}}^{(n)}$ . Here $\unicode[STIX]{x1D712}$ is any global character of $\text{GL}_{1}(\mathbf{A})$ such that $\unicode[STIX]{x1D712}=\unicode[STIX]{x1D712}_{1}^{n}$ for some character $\unicode[STIX]{x1D712}_{1}$ of $\text{GL}_{1}(\mathbf{A})$ . This last representation is defined as a residue of an Eisenstein series, and as $\unicode[STIX]{x1D6E9}_{n}^{(n)}$ it has a unique Whittaker function. A second extension is to replace $\unicode[STIX]{x1D6E9}_{n}^{(n)}$ by a cuspidal theta representation $\unicode[STIX]{x1D6E9}_{n,\unicode[STIX]{x1D712}}^{(n)}$ when it exists. Here $\unicode[STIX]{x1D712}$ is any global character of $\text{GL}_{1}(\mathbf{A})$ which is not of the form $\unicode[STIX]{x1D712}=\unicode[STIX]{x1D712}_{1}^{n}$ . For example, for $n=2$ such cuspidal representations were constructed in [Reference Gelbart and Piatetski-ShapiroGP80, Reference FlickerFli80]. For $n=3$ , see [Reference Patterson and Piatetski-ShapiroPP84] for the construction of such cuspidal representations. In both of these extensions we expect to get the twisted $L$ function $L^{S}(s,\unicode[STIX]{x1D70B}^{(n)}\otimes \unicode[STIX]{x1D712}^{-1})$ . In the first case, when $\unicode[STIX]{x1D6E9}_{n,\unicode[STIX]{x1D712}}^{(n)}$ is not cuspidal, we expect this $L$ function to be holomorphic in all cases. However, if $\unicode[STIX]{x1D6E9}_{n,\unicode[STIX]{x1D712}}^{(n)}$ is cuspidal, and $r=n$ , then we do expect a simple pole at $s=1$ if $\unicode[STIX]{x1D70B}^{(n)}=\unicode[STIX]{x1D6E9}_{n,\unicode[STIX]{x1D712}}^{(n)}$ .

Finally, we mention that the result proved in this paper simplifies some of the proofs in [Reference Friedberg and GinzburgFG16]. This is explained in detail in [Reference Friedberg and GinzburgFG16] before and after equation (1).

2 Generating functions

The main references for this section are [Reference Bump and FriedbergBF99, Reference Kazhdan and PattersonKP84]. Fix a positive integer $n>1$ . Let $F$ denote a local non-archimedean field which contains a full set of $n$ th roots of unity. Let $\text{GL}_{r}^{(n)}(F)$ denote the metaplectic $n$ -fold cover of the group $\text{GL}_{r}(F)$ . We realize this group as pairs $\langle g,\unicode[STIX]{x1D716}\rangle$ , where $g\in \text{GL}_{r}(F)$ and $\unicode[STIX]{x1D716}$ is an $n$ th root of unity. We shall assume that $|n|_{F}=1$ . Let $K_{r}$ denote the standard maximal compact subgroup of $\text{GL}_{r}(F)$ . Then the group $K_{r}$ splits under the covering, and can be viewed as a subgroup of $\text{GL}_{r}^{(n)}(F)$ . Henceforth, we shall omit the notation of the field $F$ . For example, we write $\text{GL}_{r}$ for $\text{GL}_{r}(F)$ . Let $B_{r}$ denote the standard Borel subgroup of  $\text{GL}_{r}$ consisting of all upper triangular matrices. Let $T_{r}$ denote the subgroup of $B_{r}$ consisting of all diagonal matrices, and let $V_{r}$ denote the group of all upper unipotent matrices in $B_{r}$ .

Let $\unicode[STIX]{x1D70B}^{(n)}$ denote an unramified representation of $\text{GL}_{r}^{(n)}$ associated to a character $\unicode[STIX]{x1D712}$ of $T_{r}$ . These representations were defined in [Reference Kazhdan and PattersonKP84]. In detail, let $T_{r,n}^{(n)}$ denote the center of $T_{r}^{(n)}$ . This defines a genuine character of $T_{r,n}^{(n)}$ which we will denote by $\unicode[STIX]{x1D712}$ . Let $T_{r,0}^{(n)}$ denote any maximal abelian subgroup of $T_{r}^{(n)}$ which contains the group $T_{r,n}^{(n)}$ . Choose any extension of the character $\unicode[STIX]{x1D712}$ from $T_{r,n}^{(n)}$ to $T_{r,0}^{(n)}$ . Extend the character $\unicode[STIX]{x1D712}$ trivially to $V_{r}$ . Then, inducing this extension to $\text{GL}_{r}^{(n)}$ , we obtain the representation $\unicode[STIX]{x1D70B}^{(n)}=\text{Ind}_{B_{r}^{(n)}}^{\text{GL}_{r}^{(n)}}\unicode[STIX]{x1D712}\unicode[STIX]{x1D6FF}_{B_{r}}^{1/2}$ . It follows from [Reference Kazhdan and PattersonKP84] that this representation depends only on the character $\unicode[STIX]{x1D712}$ . See also [Reference Bump and FriedbergBF99, p. 5]. In this paper we choose the maximal abelian subgroup $T_{r,0}^{(n)}$ to be the following. It is the group generated by $T_{r,n}^{(n)}$ and all elements $\langle t,\unicode[STIX]{x1D716}\rangle \in T_{r}^{(n)}$ such that all diagonal entries of $t$ are units. Then it follows from [Reference Kazhdan and PattersonKP84] that $T_{r,0}^{(n)}$ is a maximal abelian subgroup of $T_{r}^{(n)}$ . The extension of $\unicode[STIX]{x1D712}$ that we choose is the trivial extension.

Assuming that $\unicode[STIX]{x1D712}$ is in general position, one can attach to $\unicode[STIX]{x1D70B}^{(n)}$ the local $L$ function which is defined as

(4) $$\begin{eqnarray}L(s,\unicode[STIX]{x1D70B}^{(n)})=\frac{1}{\mathop{\prod }_{i=1}^{r}(1-\unicode[STIX]{x1D712}_{i}^{n}(p)q^{-s})}.\end{eqnarray}$$

Here $p$ is a generator of the maximal ideal in the ring of integers of $F$ , and $q^{-1}=|p|_{F}$ . Also, $s$ is a complex variable.

In [Reference Bump and FriedbergBF99, formula (1.4)] the function $\widetilde{\unicode[STIX]{x1D6E5}}_{s}(h)$ is defined. This function is a function of $\text{GL}_{r}^{(n)}$ and is defined as follows. It is an anti-genuine $K_{r}$ bi-invariant function, and hence it is enough to define $\widetilde{\unicode[STIX]{x1D6E5}}_{s}(h)$ on elements $h=\langle t,1\rangle$ where $t=\text{diag}(p^{n_{1}},p^{n_{2}},\ldots ,p^{n_{r}})\in T_{r}$ . On such an element $h$ , $\widetilde{\unicode[STIX]{x1D6E5}}_{s}(h)=0$ unless all $n_{i}$ are non-negative integers, each one divisible by $n$ . Finally, if all $n_{i}$ are non-negative integers, and each one of them is divisible by $n$ , then

$$\begin{eqnarray}\widetilde{\unicode[STIX]{x1D6E5}}_{s}(\langle t,1\rangle )=|\text{det}(t)|^{s/n+(r-1)/2n}\unicode[STIX]{x1D6FF}_{B_{r}}^{(n-1)/2n}(t).\end{eqnarray}$$

Proposition 1.1 in [Reference Bump and FriedbergBF99] states that for $\text{Re}(s)$ large,

(5) $$\begin{eqnarray}\int _{\text{GL}_{r}}\unicode[STIX]{x1D714}_{\unicode[STIX]{x1D70B}^{(n)}}(h)\widetilde{\unicode[STIX]{x1D6E5}}_{s}(h)\,dh=L(s,\unicode[STIX]{x1D70B}^{(n)}).\end{eqnarray}$$

Here, $\unicode[STIX]{x1D714}_{\unicode[STIX]{x1D70B}^{(n)}}$ , denoted by $\unicode[STIX]{x1D70E}$ in [Reference Bump and FriedbergBF99], is the spherical function attached to $\unicode[STIX]{x1D70B}^{(n)}$ . Thus $\unicode[STIX]{x1D714}_{\unicode[STIX]{x1D70B}^{(n)}}$ is a genuine $K_{r}$ bi-invariant function of $\text{GL}_{r}^{(n)}$ . As is well known, the function $\widetilde{\unicode[STIX]{x1D6E5}}_{s}(h)$ is uniquely determined by [Reference Bump and FriedbergBF99, Proposition 1.1]. This function is referred to as the generating function for the standard $L$ function of the group $\text{GL}_{r}^{(n)}$ .

We will give a different realization of the function $\widetilde{\unicode[STIX]{x1D6E5}}_{s}(h)$ . To do that let $\unicode[STIX]{x1D6E9}_{nr}^{(n)}$ denote the local unramified theta representation of $\text{GL}_{nr}^{(n)}$ as constructed in [Reference Kazhdan and PattersonKP84]. This representation is the unramified sub-representation of $\text{Ind}_{B_{nr}^{(n)}}^{\text{GL}_{nr}^{(n)}}\unicode[STIX]{x1D6FF}_{B_{nr}}^{(n-1)/2n}=\text{Ind}_{B_{nr}^{(n)}}^{\text{GL}_{nr}^{(n)}}\unicode[STIX]{x1D6FF}_{B_{nr}}^{-1/2n}\unicode[STIX]{x1D6FF}_{B_{nr}}^{1/2}$ . Here, $B_{nr}$ is the Borel subgroup of $\text{GL}_{nr}$ . The definition of this induced representation is similar to the definition of the representation $\unicode[STIX]{x1D70B}^{(n)}$ given above, replacing the group $\text{GL}_{r}^{(n)}$ by $\text{GL}_{nr}^{(n)}$ , and the character $\unicode[STIX]{x1D712}$ by the character $\unicode[STIX]{x1D6FF}_{B_{nr}}^{-1/2n}$ .

This representation is not generic, but it still has a certain unique functional defined on it. To describe this functional, let $U_{nr}$ denote the unipotent radical of the parabolic subgroup of $\text{GL}_{nr}$ whose Levi part is $\text{GL}_{r}\times \text{GL}_{r}\times \cdots \times \text{GL}_{r}$ . In term of matrices the group $U_{nr}$ consists of all matrices of the form

(6) $$\begin{eqnarray}\left(\begin{array}{@{}ccccc@{}}I & X_{1,2} & X_{1,3} & \ldots \, & X_{1,n}\\ & I & X_{2,3} & \ldots \, & X_{2,n}\\ & & I & \ddots & \vdots \\ & & & \ddots & X_{n-1,n}\\ & & & & I\end{array}\right).\end{eqnarray}$$

Here $I$ is the $r\times r$ identity matrix, and $X_{i,j}\in \text{Mat}_{r\times r}$ .

Let $\unicode[STIX]{x1D713}$ denote an unramified character of $F$ . Define a character $\unicode[STIX]{x1D713}_{U_{nr}}$ of $U_{nr}$ as follows. For $u\in U_{nr}$ as above, define $\unicode[STIX]{x1D713}_{U_{nr}}(u)=\unicode[STIX]{x1D713}(\text{tr}(X_{1,2}+X_{2,3}+\cdots +X_{n-1,n}))$ . The stabilizer of $\unicode[STIX]{x1D713}_{U_{nr}}$ inside $\text{GL}_{r}\times \text{GL}_{r}\times \cdots \times \text{GL}_{r}$ is the group $\text{GL}_{r}^{\unicode[STIX]{x1D6E5}}$ embedded diagonally. The embedding of  $\text{GL}_{r}^{\unicode[STIX]{x1D6E5}}$  inside $\text{GL}_{nr}$ is given by $g\mapsto \text{diag}(g,g,\ldots ,g)$ .

Given a representation $\unicode[STIX]{x1D70E}_{nr}^{(n)}$ of $\text{GL}_{nr}^{(n)}$ , we consider the space of all functionals on $\unicode[STIX]{x1D70E}_{nr}^{(n)}$ which satisfies $l(\unicode[STIX]{x1D70E}_{nr}^{(n)}(u)v)=\unicode[STIX]{x1D713}_{U_{nr}}(u)l(v)$ for all $u\in U_{nr}$ and all vectors $v$ in the space of $\unicode[STIX]{x1D70E}_{nr}^{(n)}$ . Given such a functional, we may consider the space of functions $W_{v}^{(n)}(h)=l(\unicode[STIX]{x1D70E}_{nr}^{(n)}(h)v)$ .

Henceforth we shall assume that $\unicode[STIX]{x1D70E}_{nr}^{(n)}=\unicode[STIX]{x1D6E9}_{nr}^{(n)}$ and denote the corresponding space of functions by $W_{nr}^{(n)}(h)$ . Then, the following proposition is proved in [Reference CaiCai16, Theorem 1.2].

Proposition 1. The space of functionals $l$ defined as above on the representation $\unicode[STIX]{x1D6E9}_{nr}^{(n)}$ is one-dimensional.

It is not hard to construct the space of functions $W_{nr}^{(n)}(h)$ explicitly on the space of $\unicode[STIX]{x1D6E9}_{nr}^{(n)}$ . Indeed, let $f\in \text{Ind}_{B_{nr}^{(n)}}^{\text{GL}_{nr}^{(n)}}\unicode[STIX]{x1D6FF}_{B_{nr}}^{(n-1)/2n}$ . Let $U_{nr}^{0}$ denote the subgroup of $U_{nr}$ which consists of all matrices $u$ as in (6) such that $X_{i,j}\in \text{Mat}_{r\times r}^{0}$ for all $i$ and $j$ . Here $\text{Mat}_{r\times r}^{0}$ is the subgroup of $\text{Mat}_{r\times r}$ consisting of all matrices $X$ such that $X[l_{1},l_{2}]=0$ for all $l_{1}<l_{2}$ , where $X[l_{1},l_{2}]$ denotes the $(l_{1},l_{2})$ th entry of $X$ . Then

(7) $$\begin{eqnarray}W_{nr}^{(n)}(h)=\int _{U_{nr}^{0}}f(w_{J}w_{0}uh)\unicode[STIX]{x1D713}_{U_{nr}}(u)\,du\end{eqnarray}$$

defines the space of functions which satisfies the required transformation properties, provided it is not identically zero. Here $w_{J}$ is the Weyl element $w_{J}=\text{diag}(J_{n},J_{n},\ldots ,J_{n})\in \text{GL}_{nr}$ where $J_{n}$ is the longest Weyl element of $\text{GL}_{n}$ . The Weyl element $w_{0}$ is defined as the element whose $(a+bn,(a-1)r+b+1)$ th entry is one for all $1\leqslant a\leqslant n$ and $0\leqslant b\leqslant r-1$ , and zero elsewhere. Matrix multiplication implies that $w_{J}w_{0}$ is the shortest Weyl element of $\text{GL}_{nr}$ with the property that for all $u\in U_{nr}^{0}$ , we have that $wuw^{-1}$ is a lower unipotent matrix.

It is not hard to prove that the function $W_{nr}^{(n)}(h)$ satisfies also the property $W_{nr}^{(n)}(k^{\unicode[STIX]{x1D6E5}}h)=W_{nr}^{(n)}(h)$ for all $k^{\unicode[STIX]{x1D6E5}}\in K_{r}\subset \text{GL}_{r}^{\unicode[STIX]{x1D6E5}}$ . The group $\text{GL}_{r}^{\unicode[STIX]{x1D6E5}}$ was defined right after (6). Indeed, it follows from [Reference Cai, Friedberg, Ginzburg and KaplanCFGK16, p. 4] right after Definition 1 that $W_{nr}^{(n)}(k^{\unicode[STIX]{x1D6E5}}h)=W_{nr}^{(n)}(h)$ for all $k^{\unicode[STIX]{x1D6E5}}\in K_{r}\cap \operatorname{SL}_{r}^{\unicode[STIX]{x1D6E5}}$ . If $k^{\unicode[STIX]{x1D6E5}}$ is any diagonal matrix in $K_{r}$ , then the property $W_{nr}^{(n)}(k^{\unicode[STIX]{x1D6E5}}h)=W_{nr}^{(n)}(h)$ follows from integral (7). We mention that to derive this identity we use our choice of the maximal abelian subgroup.

By considering the function $W_{nr}^{(n)}(h)$ corresponding to the $K_{nr}$ fixed vector $f$ in the space of $\unicode[STIX]{x1D6E9}_{nr}^{(n)}$ , one can easily show that $W_{nr}^{(n)}(e)\neq 0$ . This will follow from the computation which we will perform in the next proposition.

Before doing that, it will be convenient to perform a simple computation which we will refer to several times. We will do it in the following subsection.

2.1 A local computation

Let $F$ denote a local field. Given a root $\unicode[STIX]{x1D6FC}$ associated with the group $\text{GL}_{b}$ , we will denote by $x_{\unicode[STIX]{x1D6FC}}(l)$ the one-dimensional unipotent subgroup of $\text{GL}_{b}$ associated with this root. Assume that $\unicode[STIX]{x1D6FC}$ and $\unicode[STIX]{x1D6FD}$ are two roots such that $\unicode[STIX]{x1D6FC}+\unicode[STIX]{x1D6FD}$ is also a root. Assume also that $x_{\unicode[STIX]{x1D6FC}}(z)x_{\unicode[STIX]{x1D6FD}}(l)=x_{\unicode[STIX]{x1D6FD}}(l)x_{\unicode[STIX]{x1D6FC}}(z)x_{\unicode[STIX]{x1D6FC}+\unicode[STIX]{x1D6FD}}(lz)$ . Let $h(a)$ denote a one-dimensional torus of $\text{GL}_{b}$ which satisfies the property $h(a)^{-1}x_{\unicode[STIX]{x1D6FC}}(z)h(a)=x_{\unicode[STIX]{x1D6FC}}(a^{-1}z)$ for all $a\in F^{\ast }$ .

Let $f$ denote a function defined on $\text{GL}_{b}(F)$ which satisfies the property

(8) $$\begin{eqnarray}f(x_{\unicode[STIX]{x1D6FD}}(l_{1})x_{\unicode[STIX]{x1D6FC}+\unicode[STIX]{x1D6FD}}(l_{2})gk)=\unicode[STIX]{x1D713}(-l_{2})f(g)\end{eqnarray}$$

for all $k\in K_{b}$ , where $K_{b}$ is the standard maximal compact subgroup of $\text{GL}_{b}$ .

Our goal in this subsection is to compute the integral

$$\begin{eqnarray}I=\int _{F^{2}}f(x_{\unicode[STIX]{x1D6FC}}(z)x_{\unicode[STIX]{x1D6FD}}(l)h(a))\unicode[STIX]{x1D713}(\unicode[STIX]{x1D716}l)\,dz\,dl.\end{eqnarray}$$

Here $\unicode[STIX]{x1D716}=0,-1$ .

Lemma 1. We have $I=f(h(a)x_{\unicode[STIX]{x1D6FC}}(-a^{-1}\unicode[STIX]{x1D716}))=f(x_{\unicode[STIX]{x1D6FC}}(-\unicode[STIX]{x1D716})h(a))$ .

Proof. Since $f$ is right $K_{b}$ invariant,

$$\begin{eqnarray}I=\int _{F^{2}}\int _{|m|\leqslant 1}f(x_{\unicode[STIX]{x1D6FC}}(z)x_{\unicode[STIX]{x1D6FD}}(l)h(a)x_{\unicode[STIX]{x1D6FC}}(m))\unicode[STIX]{x1D713}(\unicode[STIX]{x1D716}l)\,dm\,dz\,dl.\end{eqnarray}$$

Conjugating $x_{\unicode[STIX]{x1D6FC}}(m)$ to the left, and using the above assumptions on the commutation relations, we obtain the integral

$$\begin{eqnarray}I=\int _{F^{2}}\int _{|m|\leqslant 1}f(x_{\unicode[STIX]{x1D6FC}}(z+am)x_{\unicode[STIX]{x1D6FC}+\unicode[STIX]{x1D6FD}}(-\mathit{lam})x_{\unicode[STIX]{x1D6FD}}(l)h(a))\unicode[STIX]{x1D713}(\unicode[STIX]{x1D716}l)\,dm\,dz\,dl.\end{eqnarray}$$

Changing variables in $z$ and using property (8), we obtain $\int \unicode[STIX]{x1D713}(\mathit{lam})\,dm$ as inner integration. Here $m$ is integrated over $|m|\leqslant 1$ . Hence we may restrict the integration domain over the $l$ variable in integral $I$ to the domain $|la|\leqslant 1$ .

The next step is to conjugate $x_{\unicode[STIX]{x1D6FD}}(l)$ to the left. Using the commutation relations and property (8), we obtain

$$\begin{eqnarray}I=\int _{F}f(x_{\unicode[STIX]{x1D6FC}}(z)h(a))\int _{|la|\leqslant 1}\unicode[STIX]{x1D713}(zl+\unicode[STIX]{x1D716}l)\,dl\,dz.\end{eqnarray}$$

Changing variables in $l$ , we obtain

$$\begin{eqnarray}I=|a|^{-1}\int _{|(z+\unicode[STIX]{x1D716})a^{-1}|\leqslant 1}f(x_{\unicode[STIX]{x1D6FC}}(z)h(a))\,dz=|a|^{-1}\int _{|(z+\unicode[STIX]{x1D716})a^{-1}|\leqslant 1}f(h(a)x_{\unicode[STIX]{x1D6FC}}(a^{-1}z))\,dz.\end{eqnarray}$$

Writing $a^{-1}z=a^{-1}z+\unicode[STIX]{x1D716}a^{-1}-\unicode[STIX]{x1D716}a^{-1}$ , we obtain

$$\begin{eqnarray}I=|a|^{-1}\int _{|(z+\unicode[STIX]{x1D716})a^{-1}|\leqslant 1}f(h(a)x_{\unicode[STIX]{x1D6FC}}(a^{-1}z+\unicode[STIX]{x1D716}a^{-1}-\unicode[STIX]{x1D716}a^{-1}))\,dz=|a|^{-1}f(h(a)x_{\unicode[STIX]{x1D6FC}}(-a^{-1}\unicode[STIX]{x1D716}))\int _{|(z+\unicode[STIX]{x1D716})a^{-1}|\leqslant 1}\,dz\end{eqnarray}$$

where the last equality is obtained from property (8), and the fact that $x_{\unicode[STIX]{x1D6FC}}(a^{-1}z+\unicode[STIX]{x1D716}a^{-1})\in K_{b}$ . From this the lemma follows.◻

With the above notation we prove the following corollary.

Corollary 1. Let $a=0$ , or if $a\in F^{\ast }$ , assume that $|a|\leqslant 1$ . Then

$$\begin{eqnarray}\int _{F}f(x_{\unicode[STIX]{x1D6FC}}(z))\unicode[STIX]{x1D713}(az)\,dz=f(e).\end{eqnarray}$$

Proof. Since $f$ is right invariant under $K_{b}$ , the above integral is equal to

$$\begin{eqnarray}\int _{F}\int _{|m|\leqslant 1}f(x_{\unicode[STIX]{x1D6FC}}(z)x_{\unicode[STIX]{x1D6FD}}(m))\unicode[STIX]{x1D713}(az)\,dm\,dz.\end{eqnarray}$$

Conjugating $x_{\unicode[STIX]{x1D6FD}}(m)$ to the left, we obtain, from the left invariant property of $f$ , the integral $\int \unicode[STIX]{x1D713}(mz)\,dm$ as inner integration. Here $m$ is integrated over $|m|\leqslant 1$ . Hence, we may restrict the integration over $z$ to the domain $|z|\leqslant 1$ . The result follows.◻

2.2 On the generating function

In this subsection we will prove that the generating function can be expressed in terms of the function $W_{nr}^{(n)}$ .

Embed $g\in \text{GL}_{r}$ in $\text{GL}_{nr}$ as $g\mapsto g_{0}=\text{diag}(g,I_{r},\ldots ,I_{r})$ . We have the following proposition.

Proposition 2. Let $W_{nr}^{(n)}(h)$ denote the function corresponding to the $K_{nr}$ fixed vector. Then, for $s^{\prime }=s/n-(n-2)r/2-1/2n$ , we have

(9) $$\begin{eqnarray}\widetilde{\unicode[STIX]{x1D6E5}}_{s}(g)=\overline{W_{nr}^{(n)}(g_{0})}|\text{det}\,g|^{s^{\prime }}.\end{eqnarray}$$

Proof. It follows from the discussion right after equation (7) that the function $W_{nr}^{(n)}(g_{0})$ is $K_{r}$ bi-invariant. To prove the proposition it is enough to show that

(10) $$\begin{eqnarray}\int _{\text{GL}_{r}}\unicode[STIX]{x1D714}_{\unicode[STIX]{x1D70B}^{(n)}}(g)\overline{W_{nr}^{(n)}(g_{0})}|\text{det}\,g|^{s^{\prime }}\,dg=L(s,\unicode[STIX]{x1D70B}^{(n)}).\end{eqnarray}$$

Notice that this will also imply that the function $W_{nr}^{(n)}(h)$ as defined in (7) is not identically zero on the space of the representation $\unicode[STIX]{x1D6E9}_{nr}^{(n)}$ . Using the identity $\unicode[STIX]{x1D714}_{\unicode[STIX]{x1D70B}^{(n)}}(g)=\int _{K_{r}}f_{\unicode[STIX]{x1D70B}^{(n)}}(kg)\,dk$ , we may, after a change of variables, replace in (10) the function $\unicode[STIX]{x1D714}_{\unicode[STIX]{x1D70B}^{(n)}}$ by $f_{\unicode[STIX]{x1D70B}^{(n)}}$ . Here $f_{\unicode[STIX]{x1D70B}^{(n)}}$ is the unramified vector in the space of $\unicode[STIX]{x1D70B}^{(n)}$ . Performing the Iwasawa decomposition, the integral in equation (10) is equal to

(11) $$\begin{eqnarray}\int _{T_{r}}f_{\unicode[STIX]{x1D70B}^{(n)}}(t)\int _{V_{r}}\overline{W_{nr}^{(n)}(v_{0}t_{0})}|\text{det}\,t|^{s^{\prime }}\unicode[STIX]{x1D6FF}_{B_{r}}(t)^{-1}\,dv_{0}\,dt.\end{eqnarray}$$

Here $V_{r}$ is the maximal unipotent subgroup of $\text{GL}_{r}$ consisting of upper unipotent matrices. Also $t=\text{diag}(a_{1},a_{2},\ldots ,a_{r})$ . Plug integral (7) into integral (11). Thus, we obtain the integral

(12) $$\begin{eqnarray}\int _{V_{r}}\int _{U_{nr}^{0}}\overline{f}(w_{J}w_{0}uv_{0}t_{0})\unicode[STIX]{x1D713}_{U_{nr}}(u)\,du\,dv_{0}\end{eqnarray}$$

as an inner integration to integral (11). Let $U_{nr}^{1}$ denote the subgroup of $U_{nr}^{0}$ consisting of all matrices such that $X_{1,2}[i,j]=0$ for all $i\neq j$ . We claim that integral (12) is equal to

(13) $$\begin{eqnarray}\int _{U_{nr}^{1}}\overline{f}(w_{J}w_{0}ut_{0})\unicode[STIX]{x1D713}_{U_{nr}}(u)\,du.\end{eqnarray}$$

We do this by using Lemma 1 several times. It is convenient to use the following notation. For all integers $1\leqslant a,b\leqslant nr$ and all $m\in F$ , let $x_{a,b}(m)=I_{nr}+me_{a,b}$ . Here $e_{a,b}$ is the matrix of size $nr$ which has a one in the $(a,b)$ th entry, and zero elsewhere.

In integral (12) consider the integrations over the variables $X_{1,2}[r,r-1]$ and $v_{0}[r-1,r]$ , where the latter variable indicates the $(r-1,r)$ th entry of $v_{0}$ . In the notation of § 2.1, let $x_{\unicode[STIX]{x1D6FC}}(z)=x_{r,2r-1}(z)$ where $z=X_{1,2}[r,r-1]$ , and let $x_{\unicode[STIX]{x1D6FD}}(l)=x_{r-1,r}(l)$ where $l=v_{0}[r-1,r]$ . With this notation we have $x_{\unicode[STIX]{x1D6FC}+\unicode[STIX]{x1D6FD}}(m)=x_{r-1,2r-1}(m)$ , and from the definition of the character $\unicode[STIX]{x1D713}_{U_{nr}}$ we have $\unicode[STIX]{x1D713}_{U_{nr}}(x_{\unicode[STIX]{x1D6FC}+\unicode[STIX]{x1D6FD}}(m))\neq 1$ . Hence, all the conditions of Lemma 1 are satisfied with $\unicode[STIX]{x1D716}=0$ and $h(a)=h(a_{r})=\text{diag}(I_{r-1},a_{r},I_{nr-r})$ . From this we deduce that in integral (12) we may restrict the domain of integration to the group $V_{r}$ with the condition that $v_{0}[r-1,r]=0$ , and to the group $U_{nr}^{0}$ with the condition $X_{1,2}[r,r-1]=0$ .

In general, we apply this process in the following order. Fix $r+1\leqslant j\leqslant 2r-1$ . Then for all $j-r+1\leqslant i\leqslant r$ , set $x_{\unicode[STIX]{x1D6FC}}(z)=x_{i,j}(z)$ with $z=X_{1,2}[i,j-r]$ , and $x_{\unicode[STIX]{x1D6FD}}(l)=x_{j-r,i}(l)$ with $l=v_{0}[j-r,i]$ . With this notation we have $x_{\unicode[STIX]{x1D6FC}+\unicode[STIX]{x1D6FD}}(m)=x_{j-r,j}(m)$ . Since $\unicode[STIX]{x1D713}_{U_{nr}}$ is not trivial on $x_{\unicode[STIX]{x1D6FC}+\unicode[STIX]{x1D6FD}}(m)$ , we can apply Lemma 1 with $\unicode[STIX]{x1D716}=0$ . The end result of this repeated process is that integral (12) is equal to integral (13).

Conjugating by $w_{0}$ , write $w_{0}U_{nr}^{1}w_{0}^{-1}=U_{nr}^{2}U_{nr}^{3}$ , where the groups $U_{nr}^{2}$ and $U_{nr}^{3}$ are defined as follows. First, identify the group $U_{nr}^{2}$ with $r$ copies of the group $V_{n}$ . Here $V_{n}$ is defined to be the group of all upper unipotent matrices of $\text{GL}_{n}$ . The embedding of $U_{nr}^{2}$ inside $\text{GL}_{nr}$ is given by $(v_{n,1},v_{n,2},\ldots ,v_{n,r})\mapsto \text{diag}(v_{n,1},v_{n,2},\ldots ,v_{n,r})$ . Here $v_{n,i}\in V_{n}$ . To define the group $U_{nr}^{3}$ , consider the unipotent group generated by all matrices of the form

(14) $$\begin{eqnarray}\left(\begin{array}{@{}ccccc@{}}I & & & & \\ Y_{2,1} & I & & & \\ Y_{3,1} & Y_{3,2} & I & & \\ \vdots & \vdots & \ddots & I & \\ Y_{r,1} & Y_{r,2} & \ldots \, & Y_{r,r-1} & I\end{array}\right).\end{eqnarray}$$

Here $Y_{i,j}$ is in $\text{Mat}_{n\times n}$ . Then the group $U_{nr}^{3}$ is generated by all matrices as in (14) which satisfies the conditions $Y_{i,j}[l_{1},l_{2}]=Y_{i,j}[1,2]=0$ for all $l_{1}\geqslant l_{2}$ .

For $v\in V_{n}$ , let $\unicode[STIX]{x1D713}_{V_{n}}(v)$ denote the Whittaker character of the group $V_{n}$ . This character is defined as follows. Given $v=(v[i,j])\in V_{n}$ , then

(15) $$\begin{eqnarray}\unicode[STIX]{x1D713}_{V_{n}}(v)=\unicode[STIX]{x1D713}(v[1,2]+v[2,3]+\cdots +v[n-1,n]).\end{eqnarray}$$

Let $u_{2}=\text{diag}(v_{n,1},v_{n,2},\ldots ,v_{n,r})\in U_{nr}^{2}$ . Define the character $\unicode[STIX]{x1D713}_{U_{nr}^{2}}$ of $U_{nr}^{2}$ as $\unicode[STIX]{x1D713}_{U_{nr}^{2}}(u_{2})=\unicode[STIX]{x1D713}_{V_{n}}(v_{n,1})\unicode[STIX]{x1D713}_{V_{n}}(v_{n,2})\cdots \unicode[STIX]{x1D713}_{V_{n}}(v_{n,r})$ . Then, in the notation of $U_{nr}^{2}U_{nr}^{3}$ , the character $\unicode[STIX]{x1D713}_{U_{nr}}$ transforms to the character $\unicode[STIX]{x1D713}_{U_{nr}^{2}}$ on the group $U_{nr}^{2}$ , and is trivial on the group $U_{nr}^{3}$ .

Thus, integral (13) is equal to

(16) $$\begin{eqnarray}\int _{U_{nr}^{3}}f_{W}(u_{3}w_{0}t_{0}w_{0}^{-1})\,du_{3}\end{eqnarray}$$

where

$$\begin{eqnarray}f_{W}(h)=\int _{U_{nr}^{2}}\overline{f}(w_{J}u_{2}h)\unicode[STIX]{x1D713}_{U_{nr}^{2}}(u_{2})\,du_{2}.\end{eqnarray}$$

We have $w_{0}t_{0}w_{0}^{-1}=\text{diag}(A_{1},A_{2},\ldots ,A_{r})$ where $A_{i}=\text{diag}(a_{i},I_{n-1})$ . Conjugating the matrix $w_{0}t_{0}w_{0}^{-1}$ to the left in integral (16), we obtain the factor

$$\begin{eqnarray}\unicode[STIX]{x1D6FC}(t)=(|a_{2}||a_{3}|^{2}|a_{4}|^{3}\cdots |a_{r}|^{r-1})^{n-2}\end{eqnarray}$$

from the change of variables in $U_{nr}^{3}$ . Thus, integral (16) is equal to

(17) $$\begin{eqnarray}\unicode[STIX]{x1D6FC}(t)\int _{U_{nr}^{3}}f_{W}(w_{0}t_{0}w_{0}^{-1}u_{3})\,du_{3}.\end{eqnarray}$$

We claim that integral (17) is equal to $\unicode[STIX]{x1D6FC}(t)f_{W}(w_{0}t_{0}w_{0}^{-1})$ . This we will show by a repeated application of Corollary 1. Indeed, fix $2\leqslant i\leqslant r$ , where we first start with $i=r$ , then $i=r-1$ and so on. Let $1\leqslant k\leqslant i-1$ . Assume that $l_{1}$ and $l_{2}$ are such that $Y_{i,k}[l_{1},l_{2}]$ is a variable in the domain of integration in integral (17). In the notation of § 2.1, let $x_{\unicode[STIX]{x1D6FC}}(z)=x_{n(i-1)+l_{1},n(k-1)+l_{2}}(z)$ with $z=Y_{i,k}[l_{1},l_{2}]$ , and let $x_{\unicode[STIX]{x1D6FD}}(m)=x_{n(k-1)+l_{2},n(i-1)+l_{1}+1}(m)$ . Then $x_{\unicode[STIX]{x1D6FC}+\unicode[STIX]{x1D6FD}}(l)=x_{n(i-1)+l_{1},n(i-1)+l_{1}+1}(l)$ , and from the properties of $f_{W}$ we have $f_{W}(x_{\unicode[STIX]{x1D6FC}+\unicode[STIX]{x1D6FD}}(l)g)=\unicode[STIX]{x1D713}(-l)f_{W}(g)$ . Applying Corollary 1 several times in the indicated order, the above claim follows.

Let $f$ be an arbitrary function in the space of $\unicode[STIX]{x1D6E9}_{nr}^{(n)}$ . Then the integral $f_{W}(h)$ defines a functional on $\unicode[STIX]{x1D6E9}_{nr}^{(n)}$ which by [Reference CaiCai16, Theorem 3.38] is unique. Applying an argument similar to that in [Reference Bump and GinzburgBG92, pp. 169–170], we deduce that for the unramified vector $f$ in the space of $\unicode[STIX]{x1D6E9}_{nr}^{(n)}$ we have the following. First, $f_{W}(w_{0}t_{0}w_{0}^{-1})=0$ unless $|a_{i}|\leqslant 1$ and $|a_{i}|=|b_{i}|^{n}$ for some $|b_{i}|\leqslant 1$ . On such elements $f_{W}(w_{0}t_{0}w_{0}^{-1})$ is not zero and is equal to $\unicode[STIX]{x1D6FF}_{B_{nr}}^{(n-1)/2n}(w_{0}t_{0}w_{0}^{-1})$ . Hence, integral (17) is equal to

(18) $$\begin{eqnarray}\unicode[STIX]{x1D6FC}(t)f_{W}(w_{0}t_{0}w_{0}^{-1})=\unicode[STIX]{x1D6FC}(t)\unicode[STIX]{x1D6FF}_{B_{nr}}^{(n-1)/2n}(w_{0}t_{0}w_{0}^{-1}).\end{eqnarray}$$

When $a_{i}=b_{i}^{n}$ , we have $f_{\unicode[STIX]{x1D70B}^{(n)}}(t)=\prod _{i=1}^{r}\unicode[STIX]{x1D712}_{i}^{n}(b_{i})\unicode[STIX]{x1D6FF}_{B_{r}}^{n/2}(\text{diag}(1,\ldots ,1,b_{i},1,\ldots ,1))$ . Combining all this, integral (11) is equal to

(19) $$\begin{eqnarray}\mathop{\prod }_{i=1}^{r}\int _{|b_{i}|\leqslant 1}\unicode[STIX]{x1D712}_{i}^{n}(b_{i})|b_{i}|^{ns^{\prime }+n(n-2)(r-1)/2+(n-1)^{2}/2}\,db_{i}.\end{eqnarray}$$

From this the proposition follows. ◻

3 The Whittaker functional of the generating function

In this section we compute the Whittaker functional of the function $W_{nr}^{(n)}(g_{0})$ . Here the notation is as in § 2, but we assume that $r<n$ . We make this assumption to get a precise proof of [Reference Bump and FriedbergBF99, Conjecture 1.2]. The case when $r\geqslant n$ is similar and will be dealt with in the next section. Embed $g\in \text{GL}_{r}$ in $\text{GL}_{n}$ as $g\mapsto \text{diag}(g,I_{n-r})$ . Let $g_{0}=\text{diag}(g,I_{n-r},I_{n},\ldots ,I_{n})\in \text{GL}_{nr}$ , where $I_{n}$ appears $r-1$ times.

Let $V_{r}$ denote the standard maximal unipotent subgroup of $\text{GL}_{r}$ , and let $\unicode[STIX]{x1D713}_{V_{r}}^{-1}$ denote the Whittaker character of $V_{r}$ . See equation (15) for the definition of $\unicode[STIX]{x1D713}_{V_{r}}$ . Let $W_{\unicode[STIX]{x1D6E9}_{n}}^{(n)}$ denote the Whittaker function of the theta function defined on $\text{GL}_{n}^{(n)}$ . Our goal is to prove the following theorem.

Theorem 2. Assume that $r<n$ . With the above notation, for all $g\in \text{GL}_{r}^{(n)}$ , we have

(20) $$\begin{eqnarray}\int _{V_{r}}W_{nr}^{(n)}(v_{0}g_{0})\unicode[STIX]{x1D713}_{V_{r}}^{-1}(v)\,dv=W_{\unicode[STIX]{x1D6E9}_{n}}^{(n)}\left(\begin{array}{@{}cc@{}}g & \\ & I_{n-r}\end{array}\right)|\text{det}\,g|^{(n-1)(r-1)/2}.\end{eqnarray}$$

Proof. We will consider the case when $r=n-1$ . This is the hardest case. When $r<n-1$ the computations are similar but simpler. Since we will use some of the notation introduced in the previous sections, we will continue to write $r$ and $n$ even though we assume that $r=n-1$ . By the Iwasawa decomposition, it is enough to prove identity (20) for $g=t=\text{diag}(a_{1},a_{2},\ldots ,a_{n-1})$ . Notice, that from the left invariant properties of $W_{nr}^{(n)}$ and $W_{\unicode[STIX]{x1D6E9}_{n}}^{(n)}$ , we may assume that $|a_{i}|\leqslant 1$ for all $1\leqslant i\leqslant n-1$ .

We start by plugging integral (7) into the left-hand side of identity (20). Doing so, we obtain the integral

(21) $$\begin{eqnarray}\int _{V_{r}}\int _{U_{nr}^{0}}f(w_{J}w_{0}uv_{0}t_{0})\unicode[STIX]{x1D713}_{U_{nr}}(u)\unicode[STIX]{x1D713}_{V_{r}}^{-1}(v)\,du\,dv.\end{eqnarray}$$

As in the proof of Proposition 2, we claim that integral (21) is equal to the integral

(22) $$\begin{eqnarray}\int _{U_{nr}^{0}}f(w_{J}w_{0}u\unicode[STIX]{x1D6FF}_{0}t_{0})\unicode[STIX]{x1D713}_{U_{nr}}(u)\,du\end{eqnarray}$$

where $\unicode[STIX]{x1D6FF}_{0}=\prod _{i=2}^{n-1}x_{i,r+i-1}(1)$ . Here, the definitions of $U_{nr}^{0}$ and $x_{a,b}(m)$ are given before and after integral (13). To prove the above claim, we follow exactly the same steps as in the proof that integral (12) is equal to integral (13). The only difference is that because of the character $\unicode[STIX]{x1D713}_{V_{r}}^{-1}$ in integral (21), for suitable variables in $V_{r}$ , we need to use Lemma 1 with $\unicode[STIX]{x1D716}=-1$ and not with $\unicode[STIX]{x1D716}=0$ as in the proof of Proposition 2. This explains the element $\unicode[STIX]{x1D6FF}_{0}$ . Next we proceed as in the proof of Proposition 2. Following the exact steps which showed that integral (13) is equal to integral (17), we deduce that integral (22) is equal to

$$\begin{eqnarray}I_{1}=\unicode[STIX]{x1D6FC}(t)\int _{U_{nr}^{3}}f_{W}(w_{0}t_{0}w_{0}^{-1}u_{3}\unicode[STIX]{x1D6FF}_{1}(t))\,du_{3}.\end{eqnarray}$$

Here the group $U_{nr}^{3}$ and $\unicode[STIX]{x1D6FC}(t)$ are defined before integral (17), and we remind the reader that we assume that $r=n-1$ . Also, we have $\unicode[STIX]{x1D6FF}_{1}(t)=\prod _{i=2}^{n-1}x_{(i-1)n+1,(i-2)n+2}(a_{i}^{-1})$ . This element is obtained by conjugating $\unicode[STIX]{x1D6FF}_{0}$ by $w_{0}$ and $t_{0}$ .

At this point, for all $2\leqslant j\leqslant n-1$ , we will introduce an integral which we denote by $I_{j}$ . To do that we first fix some notation. Let $t_{j}=\text{diag}(A_{j,j},A_{j,j+1},\ldots ,A_{j,n-1},I_{n},\ldots ,I_{n})$ denote the torus element of $\text{GL}_{nr}$ where $A_{j,j}=\text{diag}(a_{1},\ldots ,a_{j},I_{n-j})$ , and for all $j+1\leqslant i\leqslant n-1$ we define $A_{j,i}=\text{diag}(I_{j},a_{i},I_{n-j-1})$ . Notice that when $j=n-1$ , we get $t_{j}=\text{diag}(A_{n-1,n-1},I_{n},\ldots ,I_{n})=t_{0}$ . Next we define $\unicode[STIX]{x1D6FC}_{j}(t)=|a_{j+1}a_{j+2}^{2}a_{j+3}^{3}\cdots a_{n-1}^{n-j-1}|^{n-2}$ , where we set $\unicode[STIX]{x1D6FC}_{n-1}(t)=1$ . Finally, we define a set of subgroups $U_{n,j}$ , and a set of characters $\unicode[STIX]{x1D713}_{U_{n,j}}$ defined on these groups. The definition is inductive, so we start with $U_{n,2}$ . Consider the group $U_{nr}^{3}$ with $r=n-1$ , as was defined right after equation (14). Let $U_{n,2}$ denote the subgroup of $U_{nr}^{3}$ with the extra condition that $Y_{n-1,i}=0$ for all $1\leqslant i\leqslant n-2$ . Assuming we defined $U_{n,j-1}$ , we define $U_{n,j}$ as the subgroup of $U_{n,j-1}$ consisting of matrices of the form (14) such that $Y_{n-j+1,i}=0$ for all $1\leqslant i\leqslant n-j$ , and also satisfies the condition $Y_{i,l}[b,j]=0$ for all $2\leqslant i\leqslant n-j$ , $1\leqslant l\leqslant i-1$ and $1\leqslant b\leqslant n$ . The character $\unicode[STIX]{x1D713}_{U_{n,j}}$ is defined as follows. For $u\in U_{n,j}$ written as in equation (14), we set $\unicode[STIX]{x1D713}_{U_{n,j}}(u)=\unicode[STIX]{x1D713}(\sum _{i=2}^{n-j}Y_{i,i-1}[j-1,j+1])$ .

With this notation, for all $2\leqslant j\leqslant n-1$ , we set

$$\begin{eqnarray}I_{j}=\unicode[STIX]{x1D6FC}_{j}(t)\int _{U_{n,j}}f_{W}(t_{j}u)\unicode[STIX]{x1D713}_{U_{n,j}}(u)\,du.\end{eqnarray}$$

We will prove that $I_{2}=I_{1}$ , and that for all $2\leqslant j\leqslant n-1$ , we have $I_{j}=I_{j-1}$ . This will complete the proof of the theorem. Indeed, proving the above implies that the left-hand side of equation (20) is equal to $I_{n-1}$ . Since $\unicode[STIX]{x1D6FC}_{n-1}(t)=1$ , the group $U_{n,n-1}$ is the trivial group, and $t_{n-1}=t_{0}$ , we deduce that $I_{n-1}=f_{W}(t_{0})$ . But as in equation (18) we obtain that $f_{W}(t_{0})$ equals the right-hand side of equation (20).

We prove that $I_{2}=I_{1}$ . Since $|a_{i}|\leqslant 1$ , we obtain the Iwasawa decomposition $\unicode[STIX]{x1D6FF}_{1}(t)=\prod _{i=2}^{n-1}x_{(i-2)n+2,(i-1)n+1}(a_{i})\prod _{i=2}^{n-1}h_{i}(a_{i})k$ . Here $k\in K_{nr}$ , and we have $\prod _{i=2}^{n-1}h_{i}(a_{i})=\text{diag}(B_{2,1},B_{2,2},\ldots ,B_{2,n-1})$ . Here $B_{2,1}=\text{diag}(1,a_{2},I_{n-2})$ , for $2\leqslant i\leqslant n-2$ we have $B_{2,i}=\text{diag}(a_{i}^{-1},a_{i+1},I_{n-2})$ , and $B_{2,n-1}=\text{diag}(a_{n-1}^{-1},I_{n-1})$ . Conjugating in $I_{1}$ the matrix $\unicode[STIX]{x1D6FF}_{1}(t)k^{-1}$ to the left, and using the left invariant properties of $f_{W}$ , we obtain by matrix multiplication

(23) $$\begin{eqnarray}I_{1}=\unicode[STIX]{x1D6FC}_{2}(t)\int _{U_{nr}^{3}}f_{W}(t_{2}u_{3})\unicode[STIX]{x1D713}_{U_{nr}^{3}}(u_{3})\,du_{3}.\end{eqnarray}$$

Here we use the fact that $w_{0}t_{0}w_{0}^{-1}\prod _{i=2}^{n-1}h_{i}(a_{i})=t_{2}$ . The factor of $|a_{2}a_{3}\cdots a_{n-1}|^{-(n-2)}$ is obtained from a change of variables when we conjugate the torus $\prod _{i=2}^{n-1}h_{i}(a_{i})$ across $U_{nr}^{3}$ . The product of this factor by $\unicode[STIX]{x1D6FC}_{1}(t)$ is equal to $\unicode[STIX]{x1D6FC}_{2}(t)$ . The character $\unicode[STIX]{x1D713}_{U_{nr}^{3}}$ is defined as follows. For $u_{3}\in U_{nr}^{3}$ , define $\unicode[STIX]{x1D713}_{U_{nr}^{3}}(u_{3})=\unicode[STIX]{x1D713}(\sum _{i=2}^{n-1}Y_{i,i-1}[1,3])$ . To complete the proof that $I_{2}=I_{1}$ , we need to show that we can restrict the support of integration from $U_{nr}^{3}$ to $U_{n,2}$ . In other words, we need to show that for all $1\leqslant i\leqslant n-2$ , the integration over all variables in $Y_{n-1,i}$ is in $K_{nr}$ . This is done as in the proof of Proposition 2 while showing that integral (17) reduces to the left-hand side of identity (18). Indeed, from the definition of the torus $t_{2}$ , given a variable $Y_{n-1,i}[l_{1},l_{2}]$ , we can find a one-dimensional unipotent subgroup $x_{\unicode[STIX]{x1D6FD}}(m)$ so that we can apply Corollary 1. Thus $I_{2}=I_{1}$ .

The next step is to prove that $I_{j}=I_{j-1}$ . The first step is to prove that we can integrate over a smaller unipotent group. Let $U_{n,j-1,1}$ denote the subgroup of $U_{n,j-1}$ consisting of all matrices which also satisfies $Y_{i,l}[b,j]=0$ for all $3\leqslant i\leqslant n-j+1$ , $1\leqslant l\leqslant i-2$ and $1\leqslant b\leqslant j-1$ . To show that we can reduce the domain of integration from $U_{n,j-1}$ to $U_{n,j-1,1}$ we apply Corollary 1. In the notation of this corollary, let $x_{\unicode[STIX]{x1D6FC}}(z)=x_{n(i-1)+b,n(l-1)+j}(z)$ with $z=Y_{i,l}[b,j]$ , and let $x_{\unicode[STIX]{x1D6FD}}(m)=x_{nl+j-2,n(i-1)+b}(m)$ . Notice that in this case the root $\unicode[STIX]{x1D6FC}+\unicode[STIX]{x1D6FD}$ corresponds to the one-dimensional unipotent subgroup $x_{nl+j-2,n(l-1)+j}(c)$ , which is a subgroup of $U_{n,j-1,1}$ . Moreover, the character $\unicode[STIX]{x1D713}_{U_{n,j-1}}$ is not trivial on this subgroup. Hence, the conditions of the Corollary 1 are satisfied. We mention that the order for which we apply this corollary is important. We first vary $3\leqslant i\leqslant n-j+1$ and fix $l=1$ . Then we repeat the same process with $l=2$ and so on.

The second step is to show that $I_{j-1}$ is equal to

(24) $$\begin{eqnarray}\unicode[STIX]{x1D6FC}_{j-1}(t)\int _{U_{n,j-1,2}}f_{W}(t_{j-1}u\unicode[STIX]{x1D6FF}_{j-1}(t))\unicode[STIX]{x1D713}_{U_{n,j-1}}(u)\,du.\end{eqnarray}$$

Here $U_{n,j-1,2}$ is the subgroup of $U_{n,j-1,1}$ which satisfies the condition that $Y_{i,i-1}[j-1,j]=0$ for all $2\leqslant i\leqslant n-j+1$ . The matrix $\unicode[STIX]{x1D6FF}_{j-1}(t)=\prod _{i=2}^{n-j+1}x_{(i-1)n+j-1,n(i-2)+j}(a_{j+i-2}^{-1})$ . To derive integral (24) we apply Corollary 1 with $x_{\unicode[STIX]{x1D6FC}}(z)=x_{n(i-1)+j-1,n(i-2)+j}(z)$ with $z=Y_{i,i-1}[j-1,j]$ and $x_{\unicode[STIX]{x1D6FD}}(l)=x_{(i-1)n+j-2,(i-1)n+j-1}(l)$ . The next step is to perform an Iwasawa decomposition for $\unicode[STIX]{x1D6FF}_{j-1}(t)$ in integral (24). This is done as with $\unicode[STIX]{x1D6FF}_{1}(t)$ and we obtain

$$\begin{eqnarray}\unicode[STIX]{x1D6FF}_{j-1}(t)=\mathop{\prod }_{i=2}^{n-j+1}x_{n(i-2)+j,(i-1)n+j-1}(a_{j+i-2})\mathop{\prod }_{i=2}^{n-j+1}h_{i}^{\prime }(a_{j+i-2})k\end{eqnarray}$$

where $k\in K_{nr}$ . Here $\prod _{i=2}^{n-j+1}h_{i}^{\prime }(a_{j+i-2})=\text{diag}(B_{j-1,1},B_{j-1,2},\ldots ,B_{j-1,n-j+1},I_{n},\ldots ,I_{n})$ , where $B_{j-1,1}=\text{diag}(I_{j-1},a_{j},I_{n-j})$ , $B_{j-1,i}=\text{diag}(I_{j-2},a_{j+i-2}^{-1},a_{j+i-1},I_{n-j})$ for $2\leqslant i\leqslant n-j$ , and $B_{j-1,n-j+1}=\text{diag}(I_{j-2},a_{n-1}^{-1},I_{n-j+1})$ . Plugging this into integral (24) and conjugating the matrix $\unicode[STIX]{x1D6FF}_{j-1}(t)k^{-1}$ to the left, we obtain

(25) $$\begin{eqnarray}\unicode[STIX]{x1D6FC}_{j}(t)\int _{U_{n,j-1,2}}f_{W}(t_{j}u)\unicode[STIX]{x1D713}_{U_{n,j}}(u)\,du.\end{eqnarray}$$

Here, we obtain the factor of $|a_{j}a_{j+1}\cdots a_{n-1}|^{-(n-2)}$ from the conjugation of the toral part of $\unicode[STIX]{x1D6FF}_{j-1}(t)k^{-1}$ across $U_{n,j-1,2}$ . This combined with $\unicode[STIX]{x1D6FC}_{j-1}(t)$ gives the factor $\unicode[STIX]{x1D6FC}_{j}(t)$ in integral (25). Notice also that the conjugation by the unipotent part of $\unicode[STIX]{x1D6FF}_{j-1}(t)k^{-1}$ changes the additive character to $\unicode[STIX]{x1D713}_{U_{n,j}}$ . This is well defined. Indeed, notice that $U_{n,j}$ is a subgroup $U_{n,j-1,2}$ and we can view $\unicode[STIX]{x1D713}_{U_{n,j}}$ as a character of $U_{n,j-1,2}$ by extending it trivially. Finally, we have the identity $t_{j-1}\prod _{i=2}^{n-j+1}h_{i}^{\prime }(a_{j+i-2})=t_{j}$ . To show that integral (25) equals $I_{j}$ , we need to show that we may restrict the domain of integration from $U_{n,j-1,2}$ to $U_{n,j}$ . We do so using Corollary 1. Indeed, the group $U_{n,j}$ is the subgroup of $U_{n,j-1,2}$ obtained by setting $Y_{n-j+1,l}=0$ for all $1\leqslant l\leqslant n-j$ and $Y_{i,i-1}[b,j]=0$ for all $2\leqslant i\leqslant n-j$ and $1\leqslant b\leqslant j-2$ . To show that we may restrict the integration over $U_{n,j-1,2}$ to the subgroup obtained by setting $Y_{n-j+1,l}=0$ , we argue in a similar way to the reduction from the group $U_{nr}^{3}$ to $U_{n,2}$ as was done right after integral (23). Then, finally, to obtain the group $U_{n,j}$ we use Corollary 1 with $x_{\unicode[STIX]{x1D6FC}}(z)=x_{n(i-1)+b,n(i-2)+j}(z)$ where $z=Y_{i,i-1}[b,j]$ and $x_{n(i-2)+j,n(i-1)+b+1}(m)$ . Here $2\leqslant i\leqslant n-j$ and $1\leqslant b\leqslant j-2$ .◻

4 The case when $r\geqslant n$

As mentioned in the introduction, the authors of [Reference Bump and FriedbergBF99] were well aware that the situation when $r\geqslant n$ is similar. Since they do not specify this case explicitly, we briefly mention the global constructions and show how a similar result to Theorem 2 holds in this case.

Assume first that $r>n$ . Let $\unicode[STIX]{x1D70B}^{(n)}$ denote a cuspidal representation of the group $\text{GL}_{r}^{(n)}(\mathbf{A})$ . Let $\unicode[STIX]{x1D6E9}_{n}^{(n)}$ denote the theta representation of the group $\text{GL}_{n}^{(n)}(\mathbf{A})$ . Then we consider the global integral (1) introduced in the introduction. The group $V_{r,n}$ is defined as follows. Recall that $V_{r}$ is the standard maximal unipotent subgroup of $\text{GL}_{r}$ . Then $V_{r,n}$ is the subgroup of $V_{r}$ consisting of all matrices $v=(v_{i,j})\in V_{r}$ such that $v_{i,j}=0$ for all $2\leqslant j\leqslant n+1$ . The character $\unicode[STIX]{x1D713}_{V_{r,n}}$ is defined by $\unicode[STIX]{x1D713}_{V_{r,n}}(v)=\unicode[STIX]{x1D713}(v_{n+1,n+2}+v_{n+2,n+3}+\cdots +v_{r-1,r})$ . It follows from the cuspidality of $\unicode[STIX]{x1D719}$ that integral (1) converges for all $s$ . A similar unfolding to that in [Reference Bump and FriedbergBF99, § 2] implies that for $\text{Re}(s)$ large, integral (1) is equal to integral (2).

Next we consider the case when $r=n$ . In this case the global integral is given by

(26) $$\begin{eqnarray}\int _{Z_{r}(\mathbf{A})\text{GL}_{r}(F)\backslash \text{GL}_{r}(\mathbf{A})}\unicode[STIX]{x1D719}(g)\overline{\unicode[STIX]{x1D703}(g)}E(g,s)\,dg.\end{eqnarray}$$

Here $Z_{r}$ is the subgroup of $Z$ , the center of $\text{GL}_{r}$ , which consists of scalar matrices which are $r$ powers. For simplicity we assume that all representations have a trivial central character. Also, $E(g,s)$ is the Eisenstein series defined on the group $\text{GL}_{r}(\mathbf{A})$ and is associated with the induced representation $\text{Ind}_{P(\mathbf{A})}^{\text{GL}_{r}(\mathbf{A})}\unicode[STIX]{x1D6FF}_{P}^{s}$ . Here $P$ is the maximal parabolic subgroup of $\text{GL}_{r}$ whose Levi part is $\text{GL}_{r-1}\times \text{GL}_{1}$ . Unfolding this integral, by first unfolding the Eisenstein series, we obtain for $\text{Re}(s)$ large that integral (26) is equal to

(27) $$\begin{eqnarray}\int _{Z_{r}(\mathbf{A})V_{r}(\mathbf{A})\backslash \text{GL}_{r}(\mathbf{A})}W_{\unicode[STIX]{x1D719}}(g)\overline{W_{\unicode[STIX]{x1D703}}(g)}f(g,s)\,dg.\end{eqnarray}$$

Here $f(g,s)$ is a section in the above induced representation.

Next we study the local unramified computation corresponding to integrals (2) and (27). Since the Whittaker coefficient of the representation $\unicode[STIX]{x1D70B}^{(n)}$ is not factorizable, it is not clear that these integrals are Eulerian. However, as explained in [Reference Bump and FriedbergBF99], if we can prove similar results to Proposition 2 and Theorem 2, the so-called ‘new way’ would imply that these integrals are indeed factorizable. As for Proposition 2, it is clear that it holds for all values of $r$ and $n$ .

As for Theorem 2, this is not the case for all matrices $g\in \text{GL}_{r}^{(n)}$ . Assuming $r\geqslant n$ , denote by $T_{0}$ the subgroup of $\text{GL}_{r}$ which consists of all diagonal matrices $t=\text{diag}(a_{1},a_{2},\ldots ,a_{r})$ such that $|a_{i}|\leqslant 1$ for $1\leqslant i\leqslant n$ and $|a_{i}|=1$ for all $n+1\leqslant i\leqslant r$ . Let $T_{0}^{(n)}$ denote the inverse image of $T_{0}$ inside $\text{GL}_{r}^{(n)}$ . Let $\text{GL}_{r,0}^{(n)}$ denote all elements $g\in \text{GL}_{r}^{(n)}$ which can be written as $g=vtk$ where $v\in V_{r}$ , $t\in T_{0}^{(n)}$ and $k\in K_{r}$ . Here $K_{r}$ is the standard maximal compact subgroup of $\text{GL}_{r}$ . With this notation we have the following theorem.

Theorem 3. Assume that $r\geqslant n$ . Then, for all $g\in \text{GL}_{r,0}^{(n)}$ , we have

(28) $$\begin{eqnarray}\int _{V_{r}}W_{nr}^{(n)}(v_{0}g_{0})\unicode[STIX]{x1D713}_{V_{r}}^{-1}(v)\,dv=W_{\unicode[STIX]{x1D6E9}_{n}}^{(n)}(g)|\text{det}\,g|^{(n-1)(r-1)/2+n-r}.\end{eqnarray}$$

Proof. The proof of this theorem is the same as the proof of Theorem 2, and so we will only indicate the end result. Using the Iwasawa decomposition, we may assume that $g_{0}=t_{0}=\text{diag}(t,I_{r},\ldots ,I_{r})$ where $t=(a_{1},\ldots ,a_{r})$ . This factorization produces a factor of $\unicode[STIX]{x1D6FF}_{B_{r}}^{-1}(t)$ .

Defining similar integrals $I_{j}$ as in Theorem 2, we prove that the left-hand side of integral (28) is equal to $f_{W}(t_{0}^{\prime })$ where $t_{0}^{\prime }=\text{diag}(A_{1},A_{2},\ldots ,A_{r-n+1},I_{n},\ldots ,I_{n})$ . Here $A_{1}=\text{diag}(a_{1},\ldots ,a_{n})$ , and for all $2\leqslant i\leqslant r-n+1$ we have $A_{i}=\text{diag}(I_{n-1},a_{n+i-1})$ . Applying the factorization of equation (18), we obtain the identity

$$\begin{eqnarray}f_{W}(t_{0}^{\prime })=\unicode[STIX]{x1D6FF}_{P_{r,n}}^{(n-1)/2n}(t_{0}^{\prime })\mathop{\prod }_{i=1}^{r-n+1}W_{\unicode[STIX]{x1D6E9}_{n}}^{(n)}(A_{i}).\end{eqnarray}$$

From the properties of the Whittaker function, we deduce that for all $2\leqslant i\leqslant r-n+1$ we have $W_{\unicode[STIX]{x1D6E9}_{n}}^{(n)}(A_{i})=0$ unless $|a_{n+i-1}|=1$ . Notice that $\unicode[STIX]{x1D6FF}_{B_{r}}^{-1}(A_{1},I_{n-r})=\unicode[STIX]{x1D6FF}_{B_{n}}^{-1}(A_{1})|\text{det}\,A_{1}|^{n-r}$ . From this the theorem follows.◻

Notice that this theorem is enough to prove that the corresponding local versions of integrals (2) and (27) are Eulerian. Indeed, the local version of integral (2) is given by

(29) $$\begin{eqnarray}\int _{V_{n}\backslash \text{GL}_{n}}W_{\unicode[STIX]{x1D719}}\left(\begin{array}{@{}cc@{}}g & \\ & I_{r-n}\end{array}\right)\overline{W_{\unicode[STIX]{x1D703}}(g)}|\text{det}\,g|^{s-(r-n)/2}\,dg.\end{eqnarray}$$

Here $\unicode[STIX]{x1D719}$ is a vector in the local component of $\unicode[STIX]{x1D70B}_{\unicode[STIX]{x1D708}}^{(n)}$ where $\unicode[STIX]{x1D708}$ is a place where all data are unramified. Similarly for $\unicode[STIX]{x1D703}$ . Also, $W_{\unicode[STIX]{x1D719}}$ is any local Whittaker functional defined on the representation $\unicode[STIX]{x1D70B}_{\unicode[STIX]{x1D708}}^{(n)}$ . Similarly, $W_{\unicode[STIX]{x1D703}}$ is the Whittaker functional defined on the space of $\unicode[STIX]{x1D6E9}_{n,\unicode[STIX]{x1D708}}^{(n)}$ . It is known that for the representation $\unicode[STIX]{x1D6E9}_{n,\unicode[STIX]{x1D708}}^{(n)}$ this Whittaker functional is unique (see [Reference Kazhdan and PattersonKP84]). However, this need not be the case for the representation $\unicode[STIX]{x1D70B}_{\unicode[STIX]{x1D708}}^{(n)}$ .

Applying the Iwasawa decomposition to the quotient $V_{r}\backslash \text{GL}_{r}$ , the domain of integration in integral (29) is reduced to the torus $T_{r}$ of $\text{GL}_{r}$ . However, because of the Whittaker functional properties, $W_{\unicode[STIX]{x1D719}}\big(\!\begin{smallmatrix}t & \\ & I_{r-n}\end{smallmatrix}\!\big)$ is zero unless $t\in T_{0}$ . Hence, we can apply Theorem 3 to deduce that integral (2) is indeed Eulerian.

A similar argument applies to integral (27). Indeed, using the properties of the Whittaker function, we can choose representatives for the quotient $Z_{r}\backslash T_{r}$ to be in the group $T_{0}$ . Hence, once again we can apply Theorem 3.

References

Bump, D. and Friedberg, S., Metaplectic generating functions and Shimura integrals , in Automorphic forms, automorphic representations, and arithmetic (Fort Worth, TX, 1996), Proceedings of Symposia in Pure Mathematics, vol. 66, Part 2 (American Mathematical Society, Providence, RI, 1999), 117.Google Scholar
Bump, D. and Ginzburg, D., Symmetric square L-functions on GL(r) , Ann. of Math. (2) 136 (1992), 137205.Google Scholar
Bump, D. and Hoffstein, J., Some Euler products associated with cubic metaplectic forms on GL(3) , Duke Math. J. 53 (1986), 10471072.Google Scholar
Bump, D. and Hoffstein, J., On Shimura’s correspondence , Duke Math. J. 55 (1987), 661691.Google Scholar
Cai, Y., Fourier coefficients for theta representations on covers of general linear groups , Trans. Amer. Math. Soc. to appear, doi:10.1090/tran/7429. Preprint (2016), arXiv:1602.06614.Google Scholar
Cai, Y., Friedberg, S., Ginzburg, D. and Kaplan, E., Doubling constructions for covering groups and tensor product L-functions, Preprint (2016), arXiv:1601.08240.Google Scholar
Flicker, Y. Z., Automorphic forms on covering groups of GL(2) , Invent. Math. 57 (1980), 119182.Google Scholar
Friedberg, S. and Ginzburg, D., Criteria for the existence of cuspidal theta representations , Res. Number Theory 2 (2016), 116.Google Scholar
Gelbart, S. and Piatetski-Shapiro, I. I., Distinguished representations and modular forms of half-integral weight , Invent. Math. 59 (1980), 145188.Google Scholar
Kazhdan, D. A. and Patterson, S. J., Metaplectic forms , Publ. Math. Inst. Hautes Études Sci. 59 (1984), 35142.Google Scholar
Patterson, S. J. and Piatetski-Shapiro, I. I., A cubic analogue of the cuspidal theta representations , J. Math. Pures Appl. (9) 63 (1984), 333375.Google Scholar
Piatetski-Shapiro, I. and Rallis, S., A new way to get Euler products , J. Reine Angew. Math. 392 (1988), 110124.Google Scholar