Hostname: page-component-8448b6f56d-cfpbc Total loading time: 0 Render date: 2024-04-18T07:15:05.906Z Has data issue: false hasContentIssue false

Formation of Epitaxial Ge Nanorings on Si by Self-assembled SiO2 Particles and Touchdown of Ge Through a Thin Layer of SiO2

Published online by Cambridge University Press:  01 February 2011

Qiming Li
Affiliation:
liqiming@unm.eduUniversity of New MexicoAlbuquerque 87131United States
Joshua L. Krauss
Affiliation:
jlkrauss@gmail.com, University of Wisconsin Madison, Madison, 53706, United States
Stephen Hersee
Affiliation:
shersee@chtm.unm.edu, University of New Mexico, Albuquerque, 87106, United States
Sang M. Han
Affiliation:
meister@unm.edu, University of New Mexico, Albuquerque, 87131, United States
Get access

Abstract

We demonstrate that hexagonally packed single-crystalline Ge rings can be grown around the contact region between self-assembled SiO2 spheres and 1.2-nm-thick chemical SiO2 on Si. When the oxide-covered Si substrate is pulled from a colloidal suspension of SiO2 spheres, the SiO2 spheres self-assemble into a hexagonally packed monolayer on the substrate. These SiO2 spheres provide a surface diffusion path to guide the Ge adspecies to reach the substrate. We have previously determined that the Ge adspecies readily desorb from the bulk SiO2 surface with a desorption activation energy of 42±3 kJ/mol. This low desorption activation energy gives rise to a low surface diffusion barrier, which in turn leads to a high diffusion length on the order of several micrometers, exceeding the dimension of the SiO2 spheres. With a flux of Ge impinging at 45° from the surface normal, the Ge beam cannot directly impinge on the underlying substrate through the openings between SiO2 spheres. The Ge adspecies diffuse around the SiO2 spheres and "touchdown"[Li et al., APL, 85(11), 1928 (2004)] through the chemical SiO2, forming epitaxial ring structures. The touchdown process anchors nanoscale Ge seed pads to the underlying Si substrate. The ring formation uniquely takes advantage of the SiO2 sphere self-assembly; the weak interaction between Ge adspecies and SiO2; and the touchdown where Ge densely nucleates on Si surface through the 1.2-nm-thick chemical oxide.

Type
Research Article
Copyright
Copyright © Materials Research Society 2006

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

“1] Li, Q., Jiang, Y.-b., XU, H., Hersee, S., and Han, S. M., “Heteroepitaxy of high -quality Ge on Si by nanoscale Ge seeds grown through a thin layer SiO2 ,” Applied Physics Letters, vol. 85, pp. 1928, 2004.Google Scholar
[2] Zhu, J.-G., Zhang, Y., and Prinz, G. A., “Ultrahigh density vertical magnetoresistive random access memory (invited),” Journal of Applied Physics, vol. 87, pp. 66686673, 2000.Google Scholar
[3] Li, S. P., Peyrade, D., Matali, M., Lebib, A., and Chen, Y., “Flux Closure Structures in Cobalt Rings,” Physical Review Letters, vol. 86, pp. 11021105, 2001.Google Scholar
[4] Aizpurua, J., Hanarp, P., Sutherland, D. S., Kall, M., Bryant, G. W., and Abajo, F. J. G. d., “Optical properties of gold nanorings,” Physical Review Letters, vol. 90, pp. 057401–7401, 2003.Google Scholar
[5] Lorke, A., Luyken, R. J., Govorov, A. O., and Kotthaus, J. P., “Spectroscopy of Nanoscopic Semiconductor Rings,” Physical Review Letters, vol. 84, pp. 22232227, 2000.Google Scholar
[6] Rabaud, W., Saminadayar, L., Mailly, D., Hasselbach, K., Benoit, A., and Etienne, B., “Persistent Currents in Mesoscopic Connected Rings,” Physical Review Letters, vol. 86, pp. 31243127, 2001.Google Scholar
[7] Jariwale, E. M. Q., Mohanty, P., Ketchen, M. B., and Webb, R. A., “Diamagnetic Persistent Current in Diffusive Normal-Metal Rings,” Physical Review Letters, vol. 86, pp. 15941597, 2001.Google Scholar
[8] Garcia, J. M., Medeiros-Ribeiro, G., Schmidt, K., Ngo, T., Feng, J. L., Lorke, A., Kotthaus, J. P., and Petroff, P. M., “Intermixing and shape changes during the formation of InAs self-assembled quantum dots,” Applied Physics Letters, vol. 71, pp. 20142016, 1997.Google Scholar
[9] Lee, B. C., Voskoboynikov, O., and Lee, C. P., “III-V semiconductor nano-rings,” Physica E Low-Dimensional Systems & Nanostructures, vol. 24, pp. 8791, 2004.Google Scholar
[10] Cain, P. A., Ahmed, H., and Williams, D. A., “Hole transport in coupled SiGe quantum dots for quantum computation,” Journal of Applied Physics, vol. 92, pp. 346350, 2002.Google Scholar
[11] Zhang, L., Golod, S. V., Deckardt, E., Prinz, V., and Grutzmacher, D., “Free-standing Si/SiGe micro- and nano-objects,” Physica E Low-Dimensional Systems & Nanostructures, vol. 23, pp. 280284, 2004.Google Scholar
[12] Lee, K. Y., Ismail, K., Chu, J. O., Gao, W. X., and Washburn, S., “Fabrication of AharonovBohm rings in Si/SiGe heterostructure,” Microelectronic Engineering, vol. 27, pp. 7982, 1995.Google Scholar
[13] Cui, J., He, Q., Jiang, X. M., Fan, Y. L., Yang, X. J., Xue, F., and Jiang, Z. M., “Self-assembled SiGe quantum rings grown on Si(001) by molecular beam epitaxy,” Applied Physics Letters, vol. 83, pp. 29072909, 2003.Google Scholar
[14] Lee, S. W., Chen, L. J., Chen, P. S., Tsai, M.-J., Liu, C. W., Chien, T. Y., and Chia, C. T., “Self-assembled nanorings in Si-capped Ge quantum dots on (001) Si,” Applied Physics Letters, vol. 83, pp. 52835285, 2003.Google Scholar
[15] Kawamura, M., Paul, N., Cherepanov, V., and Voigtlander, B., “Nanowires and Nanorings at the atomic level,” Physical Review Letters, vol. 91, pp. 09102–1, 2003.Google Scholar
[16] Voigtlander, B., Kawamura, M., Paul, N., and Cherepanov, V., “Formation of Si/Ge nanostructures at surfaces by self-organization,” Journal of Physics: Condensed Matter, vol. 16, pp. S1535–S1551, 2004.Google Scholar
[17] Hulteen, J. C. and Duyne, R. P. Van, “Nanosphere lithography - a materials general fabrication process for periodic particle array surfaces,” JOURNAL OF VACUUM SCIENCE & TECHNOLOGY A-VACUUM SURFACES AND FILMS, vol. 13, pp. 15531558, 1995.Google Scholar
[18] Hulteen, J. C., Treichel, D. A., Smith, M. T., Duval, M. L., Jensen, T. R., and Duyne, R. P. Van, “Nanosphere lithography: Size-tunable silver nanoparticle and surface cluster arrays,” Journal of Physical Chemistry, vol. 103, pp. 38543863, 1999.Google Scholar
[19] Liao, X. Z., Zou, J., Cockayne, D. J. H., Qin, J., Jiang, Z. M., Wang, X., and Leon, R., “Strain relaxation by alloying effects in Ge islands grown on Si(001),” Physical Review B, vol.60, pp. 1560515608, 1999.Google Scholar
[20] Chaparro, S. A. and Zhang, Y., “Evolution of Ge/Si(100) islands: Island size and temperature dependence,” Journal of Applied Physics, vol. 87, pp. 22452254, 2000.Google Scholar
[21] Chaparro, S. A., Zhang, Y., and Drucker, J., “Strain relief via trench formation in Ge/Si(100) island,” Applied Physics Letters, vol. 76, pp. 35343536, 2000.Google Scholar
[22] Denker, U., Schmidt, O. G., Jin-Philipp, N.-Y., and Eberl, K., “Trench formation around and between self-assembled Ge islands on Si,” Applied Physics Letters, vol. 78, pp. 37233725, 2001.Google Scholar
[23] Li, Q., Krauss, J. L., Hersee, S., and Han, S. M., “The interaction of Ge with chemical oxide and thermal oxide,” 2005.Google Scholar
[24] Seebauer, E. G. and Allen, C. E., “Estimating Surface Diffusion Coefficients,” Progress in Surface Science, vol. 49, pp. 265330, 1995.Google Scholar
[25] Zinke-Allmang, M. and Stoyanov, S., “Surface Diffusion Coefficients on StranskiKrastanov Layers,” Japanese Journal of Applied Physics Part2 - Letters, vol. 29, pp. L1884–L1887, 1990.Google Scholar
[26] Hwang, I. S., Theiss, S. K., and Golovchenko, J. A., “Mobile point-defects and atomic basis for structural transformations of a crystal-surface,” Science Magazine, vol. 265, pp.490, 1994.Google Scholar
[27] Yun, S. J., Lee, S.-C., Lee, J.-J., and Nam, K.-S., “Selective epitaxy Growth of Si1-xGe on SiO2-patterned Si Substrate using elemental source molecular beam epitaxy,” Int. Symp. Compound Semiconductors., pp. 1167, 1996.Google Scholar