Hostname: page-component-8448b6f56d-c47g7 Total loading time: 0 Render date: 2024-04-24T01:15:56.443Z Has data issue: false hasContentIssue false

Effect of Nitridation and Buffer in GaN Films Grown on A-Plane (11-20) Sapphire

Published online by Cambridge University Press:  10 February 2011

D. Doppalapudi
Affiliation:
Center for Photonics Research, Dept. of Manufacturing Engineering, Boston University, Boston, MA 02215. dharani@bu.edu
E. Iliopoulos
Affiliation:
Dept. of Electrical Engineering, Boston University, Boston, MA 02215.
S. N. Basu
Affiliation:
Center for Photonics Research, Dept. of Manufacturing Engineering, Boston University, Boston, MA 02215.
T. D. Moustakas
Affiliation:
Dept. of Electrical Engineering, Boston University, Boston, MA 02215.
Get access

Abstract

In this paper, we report on a systematic study of GaN growth on the A-plane sapphire by plasma-assisted MBE. The effects of plasma nitridation of the substrate and the growth of a low temperature GaN buffer on the structure and optoelectronic properties of the films are addressed. TEM studies indicate that films grown on substrates which were not nitridated prior to growth have a significant fraction of zinc-blende domains and poor orientational relation with the substrate. On the contrary, nitridation leads to films with superior structural and optoelectronic properties. The low temperature GaN buffer, grown on nitridated substrates, was found to also have a pronounced effect on the optoelectronic properties of the GaN films, especially in those with low carrier concentrations. The correlation between TEM and photoluminescence studies suggest that the transition at 3.27 eV can be attributed to the cubic domains in the films.

Type
Research Article
Copyright
Copyright © Materials Research Society 1998

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Amano, H., Sawaki, N., Akasaki, I. and Toyoda, Y., Appl. Phys. Lett. 48, 353 (1986).Google Scholar
2. Moustakas, T. D., Molnar, R. J., Lei, T., Menon, G. and Eddy, C. R. Jr., Mat. Res. Soc. Symp. Proc. Vol.242, 427 (1992).Google Scholar
3. Moustakas, T. D., Lei, T. and Molnar, R. J., Physica B, 185, 36 (1993).Google Scholar
4. Nakamura, S., Jpn. J. Appl. Phys. 30, L1705 (1991).Google Scholar
5. Moustakas, T. D. and Molnar, R. J., Mat. Res. Soc. Symp. Proc. Vol.281, 753 (1993).Google Scholar
6. Keller, S., Keller, B. P., Wu, Y. F., Heying, B., Kapolnek, D., Speck, J. S., Mishra, U. K. and DenBaars, S. P., Appl. Phys. Lett. 68 (11), 1525 (1996).Google Scholar
7. Uchida, K., Watanabe, A., Yano, F., Kouguchi, M., Tanaka, T. and Mingawa, S., J. Appl. Phys. 79 (7), 3487 (1996).Google Scholar
8. Matsuoka, T., Sakai, T. and Katsui, A., Optoelectronics-Dev. & Tech., 5 (1), 53 (1990).Google Scholar
9. Doverspike, K., Rowland, L. B.,, Gaskill, D. K. and Freitas, J. A. Jr., J. of Electr. Mat. 24, 269(1994).Google Scholar
10. Molnar, R. J., Singh, R. and Moustakas, T. D., J. of Electr. Mat. 24, 36 (1995).Google Scholar
11. Strite, S. and Morkoc, H., J. Vac. Sci. Tech., B10,1237 (1992).Google Scholar
12. Lei, T., Ludwig, K. F. Jr. and Moustakas, T. D., J. Appl. Phys., 74 (7), 4430 (1993).Google Scholar
13. Iliopolous, E., Doppalapudi, D., Ng, H. M., Moustakas, T. D., to be published.Google Scholar
14. Moustakas, T. D., Mat. Res. Soc. Symp. Proc. Vol.395, 111 (1996).Google Scholar
15. Lagerstedt, O. and Monemar, B., J. Appl. Phys. 45, 2266 (1979).Google Scholar
16. Ilegems, M. and Dingle, R., J. Appl. Phys. 39, 4234 (1973).Google Scholar
17. Weimann, N. G., Eastman, L. F., Doppalapudi, D., Ng, H. M. and Moustakas, T. D., to be published.Google Scholar