Hostname: page-component-8448b6f56d-qsmjn Total loading time: 0 Render date: 2024-04-24T17:57:53.795Z Has data issue: false hasContentIssue false

Interval Annealing During Alternating Pulse Deposition

Published online by Cambridge University Press:  28 July 2011

J.F. Conley Jr.
Affiliation:
IC Process Technology Laboratory, Sharp Labs of America, Camas, WA
D.J. Tweet
Affiliation:
IC Process Technology Laboratory, Sharp Labs of America, Camas, WA
Y. Ono
Affiliation:
IC Process Technology Laboratory, Sharp Labs of America, Camas, WA
G. Stecker
Affiliation:
IC Process Technology Laboratory, Sharp Labs of America, Camas, WA
Get access

Abstract

Thin films deposited via atomic layer deposition at low temperature tend to be less dense than bulk material and typically require high temperature post deposition annealing for densification and removal of unreacted precursor ligands. We have found that improved film densification can be achieved by interval annealing, in which in-situ moderate temperature (∼420°C) rapid thermal anneals are performed after every n deposition cycles. HfO2 film density and refractive index were found to increase with decreasing anneal interval (more frequent annealing). The highest density films could be achieved only by every-cycle annealing and could not be achieved by post deposition annealing. The densified every cycle annealed films have been shown to have improved equivalent thickness and leakage and decreased interfacial layer thickness.

Type
Research Article
Copyright
Copyright © Materials Research Society 2004

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Ritala, M. and Leskela, M., “Atomic Layer Deposition,“ in Ch. 2 of Handbook of Thin Film Materials, vol. 1, edited by Nalwa, H.S. (Academic, New York, 2002), p. 103.Google Scholar
2. Conley, J.F. Jr., Ono, Y., Zhuang, W., Tweet, D.J., Gao, W., Mohammed, S. K., and Solanki, R., Electrochem. and Sol. State Lett. 5(5), C57 (2002).Google Scholar
3. Gusev, E.P., Cabral, C. Jr., Copel, M., D'Emic, C., and Gribelyuk, M., Micro. Eng. 69, 145 (2003).Google Scholar
4. Conley, J.F. Jr., Ono, Y., Tweet, D.J., Zhuang, W., and Solanki, R., J. Appl. Phys. 93(1), 712 (2003).Google Scholar
5. Nabatame, T., et al. , 2003 Symp. of VLSI Tech. Digest of Papers.Google Scholar
6. Yeo, C.C., Cho, B.J., Joo, M.S., Whoang, S.J., Kwong, D.L., Bera, L.K., Mathew, S., and Balasubramanian, N., Electrochem. and Sol. State. Lett. 6(11), F42 (2003).Google Scholar
7. Conley, J.F. Jr., Ono, Y., and Tweet, D.J., Appl. Phys. Lett. 84(11), 1913 (2004).Google Scholar
8. Conley, J.F. Jr., Ono, Y., and Solanki, R., Mat. Res. Soc. Proc. Vol. 765, pp. 9196, (Materials Research Society, Pittsburgh, PA, 2003).Google Scholar
9. Ritala, M., Kukli, K., Rahtu, A., Raisanen, P.I., Leskela, M., Sajavaara, T., and Keinonen, J., Science 288, 319 (2000).Google Scholar
10. Conley, J.F. Jr., Ono, Y., Tweet, D.J., and Solanki, R., Appl. Phys. Lett. 84(3), 398 (2004).Google Scholar
11. Zafar, S., Callegari, A., Narayanan, V., and Guha, S., Appl. Phys. Lett. 81(14), 2608 (2002).Google Scholar
12. Conley, J.F. Jr., Ono, Y., Solanki, R., Stecker, G., and Zhuang, W., Appl. Phys. Lett. 82(20), 3508 (2003).Google Scholar
13. Zhuang, W., Conley, J.F. Jr., Ono, Y., Evans, D.R., and Solanki, R., Intgr. Ferroelect. 48, 312 (2002).Google Scholar
14. Hausmann, D., Becker, J., Wang, S., and Gordan, R.G., Science 298, 402 (2002).Google Scholar
15. Lee, B.H., Kang, L., Nieh, R., Qi, W.J., and Lee, J.C., Appl. Phys. Lett. 76, 1926 (2000).Google Scholar
16. Smith, R.C., Ma, T., Hoilien, N., Tsung, L.Y., Bevan, M.J., Colombo, L., Roberts, J., Campbell, S.A., and Gladfelter, W.L., Adv. Mater Opt. Electron. 10, 105 (2000).Google Scholar
17. Zhu, W., Ma, T.P., Tamagawa, T., Di, Y., Kim, J., Carruthers, R., et al. , IEDM 2001, p. 463.Google Scholar
18. Kim, H., McIntyre, P.C., and Saraswat, K.C., Appl. Phys. Lett. 82(1), 106 (2003).Google Scholar
19. Ho, M.Y., et al. , J. Appl. Phys. 93(3), 1477 (2003).Google Scholar