Hostname: page-component-76fb5796d-wq484 Total loading time: 0 Render date: 2024-04-25T08:15:47.098Z Has data issue: false hasContentIssue false

N2 Detection by the Carbon nanotubes Mat and Bundle

Published online by Cambridge University Press:  01 February 2011

Chien-Sheng Huang
Affiliation:
huangchs@yuntech.edu.tw, National Yunlin University of Science and Technology, Taiwan, 64002, 123 University Road, Section 3,, Douliou, Yunlin, 64002, Taiwan
Bohr-Ran Huang
Affiliation:
huangbr@yuntech.edu.tw, Taiwan
Yung-Huang Jang
Affiliation:
g9213725@yuntech.edu.tw
Meng-Shian Tsai
Affiliation:
g9313763@yuntech.edu.tw
Jiun-You Ya
Affiliation:
g9113101@yuntech.edu.tw
Jia-An Jian
Affiliation:
g9113005@yuntech.edu.tw
Get access

Abstract

Carbon nanotubes (CNTs) were synthesized by thermal chemical vapor deposition (thermal CVD) on n-type Si (100) at 700 ° under C2H2 gas flow ratio of 30 sccm. Fe catalysts were pre-deposited by RF sputtering system with RF power 150 W. Two kinds of as-grown CNTs were used to detect N2: the vertically oriented carbon nanotubes (CNTs) mat and horizontally oriented CNTs bundle. Two-terminal electrical measurements were performed at room temperature of 25 °. The electrical resistance of CNTs mat or bundle was found to increase when exposed to N2 environment, and to return back after the N2 pumping, respectively. However, the CNTs bundle had better sensitivity and possessed faster response and recovery time. This could be ascribed to that the CNTs bundle, with more effective grooves on the surface, provided more lower binding-force sites to absorb N2 molecules than the CNTs mat dose, which prominently had interstitial sites.

Type
Research Article
Copyright
Copyright © Materials Research Society 2006

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

[1] Iijima, S., Nature 354 (1991) 56.Google Scholar
[2] Heer, W. A. de, Chatelain, A., and Ugarte, D., Science 270 (1995) 1179.Google Scholar
[3] Hafner, J., Cheung, C., Lieber, C., Nature 398 (1999) 761.Google Scholar
[4] Liu, C., Fan, Y.Y., Liu, M., Cong, H.T., Cheng, H.M., Dresselhaus, M.S., Science 286 (1999) 1127.Google Scholar
[5] Tans, S.J., Devoret, M.H., Dai, H., Thess, A., Smalley, R.E., Geerligs, L.J., Dekker, C., Nature 386 (1997) 474.Google Scholar
[6] Rueckes, T., Kim, K., Joselevich, E., Tseng, G. Y., Cheung, C., and Lieber, C. M., Science 289 (2000) 94.Google Scholar
[7] Bee-Yu, Wei, Ming-Chih, Hsu, Pi-Guey, Su, Hong-Ming, Lin, Ren-Jang, Wu, Hong-Jen, Lai, Sensors and Actuators B 101 (2004) 81.Google Scholar
[8] Valentini, L., Cantalini, C., Armentano, I., Kenny, J.M., Lozzi, L., Santucci, S., Diamond and Related Materials 13 (2004) 1301.Google Scholar
[9] Wang, S.G., Zhang, Qing, Yang, D.J., Sellin, P.J., Zhong, G.F., Diamond and Related aterials 13 (2004) 1327.Google Scholar
[10] Special issue on Gas-Sensing Materials, MRS Bull. 24(1999).Google Scholar
[11] Shimizu, Y. and Egashira, M., MRS Bull. 24, 18 (1999).Google Scholar
[12] Takao, Y., Miyazaki, K., Shimizu, Y., Egashira, M., J.Electrochem. Soc. 141, 1028 (1994).Google Scholar
[13] McConnell, H. M. et al., Science 257, 1906 (1992).Google Scholar
[14] Mandelis, A. and Christoݤes, C., Physics, Chemistry and Technology of Solid State Gas Sensor Devices (Wiley, New York, 1993).Google Scholar
[15] Miasik, J., Hooper, A., Toݥld, B., J. Chem. Soc. Faraday Trans. 1 82, 1117 (1986).Google Scholar
[16] Capone, S., Mongelli, S., Rella, R., Siciliano, P., Valli, L.,Langmuir 15, 1748 (1999).Google Scholar
[17] Longergan, M. C. et al., Chem. Mater. 8, 2298 (1996).Google Scholar
[18] Keat Ghee, Ong, Kefeng, Zeng, and Craig A., Grimes, IEEE sensors journal 2Google Scholar
[19] Hong-Ming, Lin, Keng, C. K., and Tung, C. Y., Nanostructured Materials 9 (1997) 747750.Google Scholar
[20] Hayakawa, I., Iwamoto, Y., Kikuta, K., Hirano, S., Sensors and Actuators B 62 (2000) 5560 Google Scholar
[21] Zhong Lin, Wang, Adv. Mater. 15 (2003) 432.Google Scholar
[22] Comini, E., Faglia, G., Sberveglieri, G., Pan, Zhengwei, Wang, Zhong L., Appl. Phys. Lett. 81 (2002) 1869.Google Scholar
[23] Dawei, Gong, Craig A., Grimes, Varghese, Oomman K., Hu, Wenchong, Singh, R.S., Chen, Zhi, Dickey, Elizabeth C., J. Mater. Res. Vol.16, No. 12 ( 2001) 3331.Google Scholar
[24] Oomman K., Varghese, Dawei, Gong, Maggie, Paulose, Ong, Keat G., Grimes, Craig A., Sensors and Actuators B 93 (2003) 338344.Google Scholar
[25] Oomman K., Varghese, Dawei, Gong, Maggie, Paulose, Grimes, Craig A., Dickey, Elizabeth C., J. Mater. Res., Vol.18, No. 1 (2003) 156.Google Scholar
[26] Walter, E.C., Ng, K., Zach, M.P., Penner, R.M., Favier, F., Microelectronic Engineering 61–62 (2002) 555561.Google Scholar
[27] Zhou, X.T., Hu, J.Q., Li, C.P., Ma, D.D.D., Lee, C.S., Lee, S.T., Chemical Physics Letters 369 (2003) 220.Google Scholar
[28] Chopra, S., McGuire, K., Gothard, N., and Rao, A. M., Appl. Phys. Lett. 83 (2003) 2280.Google Scholar
[29] Varghese, O. K., Kichambare, P. D., Gong, D., Ong, K. G., Dickey, E. C., Grimes, C. A., Sensors and Actuators B 81 (2001) 32.Google Scholar
[30] Jijun, Zhao, Alper, Buldum, Jie, Han, Jian Ping, Lu, Nanotechnology 13 (2002) 195.Google Scholar
[31] Villalpando-Pàez, F., Romero, A.H., Muñoz-Sandoval, E., Martínez, L.M., Terrones, H., Terrones, M., Chemical Physics Letters 386 (2004) 137.Google Scholar
[32] Philip G., Collins, Keith, Bradley, Masa, Ishigami, Zettl, A., SCIENCE 287 (2000) 1801.Google Scholar
[33] Jing, Kong, Franklin, Nathan R., Zhou, Chongwu, Chapline, Michael G., Peng, Shu, Cho, Kyeongjae, Dail, Hongjie, SCIENCE 287 (2000) 622.Google Scholar
[34] Jing, Kong, Nathan R., Franklin, Chongwu, Zhou, SCIENCE 28 (2000) 287.Google Scholar
[35] Jijun, Zhao, Jie, Han, and Jian Ping, Lu Phys. Rev. B 65, 193401 (2002)Google Scholar