Hostname: page-component-8448b6f56d-wq2xx Total loading time: 0 Render date: 2024-04-19T09:52:08.269Z Has data issue: false hasContentIssue false

Analysis of Indian post-rainy sorghum multi-location trial data reveals complexity of genotype × environment interaction

Published online by Cambridge University Press:  28 March 2016

S. RAKSHIT*
Affiliation:
ICAR-Indian Institute of Millets Research, Rajendranagar, Hyderabad 500 030, Telangana, India
K. N. GANAPATHY
Affiliation:
ICAR-Indian Institute of Millets Research, Rajendranagar, Hyderabad 500 030, Telangana, India
S. S. GOMASHE
Affiliation:
ICAR-Indian Institute of Millets Research, Rajendranagar, Hyderabad 500 030, Telangana, India
A. DHANDAPANI
Affiliation:
ICAR-National Academy of Agricultural Research Management, Rajendranagar, Hyderabad 500 030, Telengana, India
M. SWAPNA
Affiliation:
ICAR-Indian Institute of Millets Research, Rajendranagar, Hyderabad 500 030, Telangana, India
S. P. MEHTRE
Affiliation:
Marathwada Agricultural University, Parbhani 431 402, Maharashtra, India
S. R. GADAKH
Affiliation:
Mahatma Phule Krishi Viswa Vidyalaya, Rahuri 413722, Dist. Ahmednagar 413722, Maharashtra, India
R. B. GHORADE
Affiliation:
Dr Panjabrao Deshmukh Krishi Vidyapeeth, Akola 444104, Maharashtra, India
M. Y. KAMATAR
Affiliation:
Main Sorghum Research Station, University of Agricultural Sciences, Dharwad 580005, Karnataka, India
B. D. JADHAV
Affiliation:
Navsari Agricultural University, Athwa Farm, Surat 395007, Gujarat, India
I. K. DAS
Affiliation:
ICAR-Indian Institute of Millets Research, Rajendranagar, Hyderabad 500 030, Telangana, India
PRABHAKAR
Affiliation:
ICAR-Indian Institute of Millets Research, Rajendranagar, Hyderabad 500 030, Telangana, India
*
*To whom all correspondence should be addressed. Email: sujay@millets.res.in

Summary

Sorghum [Sorghum bicolor (L.) Moench] grown in India is of two adaptive types: rainy and post-rainy. The post-rainy sorghum is predominantly consumed by humans. While releasing new cultivars through multi-location testing, major emphasis is given to the superiority of new cultivars over existing cultivars, with very little emphasis on the genotype × environment interaction (GEI). To understand the complexity of GEI in post-rainy sorghum testing location trials, the multi-location evaluation data of two post-rainy seasons (2009/10 and 2010/11) under the All India Coordinated Sorghum Improvement Project were analysed. In both years, location explained the highest proportion of total sum of squares followed by the GEI effect and main effect of genotype. Additive main effects and multiplicative interaction (AMMI), stability values (ASV) and genotype + genotype × environment interaction (GGE) instability values recorded high correlation resulting in identification of the best performing cultivars. However, the rank correlations were lower, though still significant. A mixture of crossover and non-crossover GEI was a common occurrence in both years. ‘Which-won-where’ analysis suggested the existence of four possible mega-environments (ME) among post-rainy testing locations, with a few non-informative locations within ME. Mega-environments are characterized by soil type, rainfall pattern and moisture conservation practices. The present study indicated the possibility of reducing the number of test locations by eliminating non-representative highly correlated locations and suggested the need to breed for location-specific genotypes rather than genotypes with wider adaptability.

Type
Crops and Soils Research Papers
Copyright
Copyright © Cambridge University Press 2016 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Casanoves, F., Baldessari, J. & Balzarini, M. (2005). Evaluation of multienvironment trials of peanut cultivars. Crop Science 45, 1826.Google Scholar
Dehghani, H., Ebadi, A. & Yousefi, A. (2006). Biplot analysis of genotype by environment interaction for barley yield in Iran. Agronomy Journal 98, 388393.Google Scholar
DeLacy, I. H., Kaul, S., Rana, B. S. & Cooper, M. (2010 a). Genotypic variation for grain and stover yield of dryland (rabi) sorghum in India 1. Magnitude of genotype × environment interactions. Field Crops Research 118, 228235.Google Scholar
DeLacy, I. H., Kaul, S., Rana, B. S. & Cooper, M. (2010 b). Genotypic variation for grain and stover yield of dryland (rabi) sorghum in India 2. A characterisation of genotype × environment interactions. Field Crops Research 118, 236242.CrossRefGoogle Scholar
FAO (2013). FAOSTAT Database. Rome: FAO. Available from: http://faostat.fao.org/site/567/default.aspx#ancor Google Scholar
Farshadfar, E., Mahmodi, N. & Yaghotipoor, A. (2011). AMMI stability value and simultaneous estimation of yield and yield stability in bread what (Triticum aestivum L.). Australian Journal of Crop Science 5, 18371844.Google Scholar
Gabriel, K. R. (1971). The biplot graphic display of matrices with application to principal component analysis. Biometrika 58, 453467.Google Scholar
Ganapathy, K. N., Gomashe, S. S., Rakshit, S., Prabhakar, B., Ambekar, S. S., Ghorade, R. B., Biradar, B. D., Saxena, U. & Patil, J. V. (2012). Genetic diversity revealed utility of SSR markers in classifying parental lines and elite genotypes of sorghum (Sorghum bicolor L Moench). Australian Journal of Crop Science 6, 14861493.Google Scholar
Gauch, H. G. (2006). Statistical analysis of yield trials by AMMI and GGE. Crop Science 46, 14881500.CrossRefGoogle Scholar
Gauch, H. G. & Zobel, R. W. (1996). AMMI analysis of yield trials. In Genotype-by-Environment Interaction (Eds Kang, M. S. & Gauch, H. G.), pp. 85122. Boca Raton, FL, USA: CRC Press.Google Scholar
Gauch, H. G. & Zobel, R. W. (1997). Identifying mega-environments and targeting genotypes. Crop Science 37, 311326.Google Scholar
Gauch, H. G., Piepho, H. P. & Annicchiarico, P. (2008). Statistical analysis of yield trials by AMMI and GGE: further considerations. Crop Science 48, 866889.CrossRefGoogle Scholar
Koutis, K., Mavromatis, A. G., Baxevanos, D. & Koutsika-Sotiriou, M. (2012). Multienvironmental evaluation of wheat landraces by GGE biplot analysis for organic breeding. Agricultural Sciences 3, 6674.Google Scholar
Mortazavian, S. M. M., Nikkhah, H. R., Hassani, F. A., Sharif-Al-Hosseini, M., Taheri, M. & Mahlooji, M. (2014). GGE Biplot and AMMI analysis of yield performance of barley genotypes across different environments in Iran. Journal of Agricultural Science and Technology 16, 609622.Google Scholar
Patil, J. V., Rakshit, S. & Khot, K. B. (2013). Genetics of post-flowering drought tolerance traits in post-rainy sorghum [Sorghum bicolor (L.) Moench]. Indian Journal of Genetics and Plant Breeding 73, 4450.Google Scholar
Purchase, J. L., Hatting, H. & van Deventer, C. S. (2000). Genotype × environment interaction of winter wheat (Triticum aestivum) in South Africa: II. Stability analysis of yield performance. South African Journal of Plant and Soil 17, 101107.CrossRefGoogle Scholar
Putto, W., Patanothai, A., Jogloy, S. & Hoogenboom, G. (2008). Determination of mega-environments for peanut breeding using the CSM-CROPGRO-peanut model. Crop Science 48, 973982.Google Scholar
Rakshit, S., Ganapathy, K. N., Gomashe, S. S., Rathore, A., Ghorade, R. B., Nagesh Kumar, M. V., Ganesmurthy, K., Jain, S. K., Kamtar, M. Y., Sachan, J. S., Ambekar, S. S., Ranwa, B. R., Kanawade, D. G., Balusamy, M., Kadam, D., Sarkar, A., Tonapi, V. A. & Patil, J. V. (2012 a). GGE Biplot analysis to evaluate genotype, environment and their interactions in sorghum multi-location data. Euphytica 185, 465479.Google Scholar
Rakshit, S., Gomashe, S. S., Ganapathy, K. N., Elangovan, M., Ratnavathi, C. V., Seetharama, N. & Patil, J. V. (2012 b). Morphological and molecular diversity reveal wide variability among sorghum maldandi landraces from India. Journal of Plant Biochemistry and Biotechnology 21, 145156.Google Scholar
Rakshit, S., Ganapathy, K. N., Gomashe, S. S., Swapna, M., More, A., Gadakh, S. R., Ghorade, R. B., Kajjidoni, S. T., Solanki, B. G., Biradar, B. D. & Prabhakar, (2014). GGE biplot analysis of genotype × environment interaction in rabi grain sorghum [Sorghum bicolor (L.) Moench]. Indian Journal of Genetics and Plant Breeding 74, 558563.Google Scholar
Rakshit, S., Hariprasanna, K., Gomashe, S., Ganapathy, K. N., Das, I. K., Ramana, O. V., Dhandapani, A. & Patil, J. V. (2015). Changes in area, yield gains, and yield stability of sorghum in major sorghum producing countries, 1970 to 2009. Crop Science 54, 15711584.Google Scholar
Rao, P. S., Reddy, P. S., Rathore, A., Reddy, B. V. S. & Panwar, S. (2011). Application GGE biplot and AMMI model to evaluate sweet sorghum (Sorghum bicolor) hybrids for genotype × environment interaction and seasonal adaptation. Indian Journal of Agricultural Science 81, 438444.Google Scholar
Sabaghnia, N., Dehghani, H. & Sabaghpour, S. H. (2008). Graphic analysis of genotype by environment interaction for lentil yield in Iran. Agronomy Journal 100, 760764.Google Scholar
Samonte, S. O. P. B., Wilson, L. T., McClung, A. M. & Medley, J. C. (2005). Targeting cultivars onto rice growing environments using AMMI and SREG GGE biplot analyses. Crop Science 45, 24142424.Google Scholar
Tolessa, T. T., Keneni, G., Sefera, T., Jarso, M. & Bekele, Y. (2013). Genotype × environment interaction and performance stability for grain yield in field pea (Pisum sativum) genotypes. International Journal of Plant Breeding 7, 1161236.Google Scholar
Yan, W. (2001). GGEbiplot – a Windows application for graphical analysis of multienvironment trial data and other types of two-way data. Agronomy Journal 93, 11111118.Google Scholar
Yan, W. (2011). GGE biplot vs AMMI graphs for genotype-by-environment data analysis. Journal of the Indian Society of Agricultural Statistics 65, 181193.Google Scholar
Yan, W. (2014). Crop Variety Trials: Data Management and Analysis. Chichester, West Sussex, UK: Wiley Blackwell.CrossRefGoogle Scholar
Yan, W. & Kang, M. S. (2003). GGE Biplot Analysis: a Graphical Tool for Breeders, Geneticists, and Agronomists. Boca Raton, FL, USA: CRC Press.Google Scholar
Yan, W. & Tinker, N. A. (2006). Biplot analysis of multi-environment trial data: principles and applications. Canadian Journal of Plant Science 86, 623645.Google Scholar
Yan, W., Hunt, L. A., Sheng, Q. & Szlavnics, Z. (2000). Cultivar evaluation and mega-environment investigation based on GGE biplots. Crop Science 40, 597605.Google Scholar
Yan, W., Kang, M. S., Ma, B-L., Woods, S. & Cornelius, P. L. (2007). GGE biplot vs. AMMI analysis of genotype-by-environment data. Crop Science 47, 643653.CrossRefGoogle Scholar
Yang, R. C., Crossa, J., Cornelius, P. L. & Burgueno, J. (2009). Biplot analysis of genotype × environment interaction: Proceed with caution. Crop Science 49, 15641576.CrossRefGoogle Scholar
Zobel, R. W., Wright, M. J. & Gauch, H. G. (1988). Statistical analysis of a yield trial. Agronomy Journal 80, 388393.Google Scholar