Hostname: page-component-8448b6f56d-dnltx Total loading time: 0 Render date: 2024-04-24T21:54:57.725Z Has data issue: false hasContentIssue false

Control of Nanocrystalline Silicon Growth Phase and Deposition Rate through Voltage Waveform Tailoring during PECVD

Published online by Cambridge University Press:  30 June 2011

E.V. Johnson
Affiliation:
LPICM-CNRS, Ecole Polytechnique, 91128 Palaiseau, France
S. Pouliquen
Affiliation:
LPP-CNRS, Ecole Polytechnique, 91128 Palaiseau, France
P.A. Delattre
Affiliation:
LPICM-CNRS, Ecole Polytechnique, 91128 Palaiseau, France LPP-CNRS, Ecole Polytechnique, 91128 Palaiseau, France
J.P. Booth
Affiliation:
LPP-CNRS, Ecole Polytechnique, 91128 Palaiseau, France
Get access

Abstract

The use of Voltage Waveform Tailoring (VWT) – that is the use of non-sinusoidal waveforms with a period equivalent to RF frequencies – is shown to be effective in modifying the electric field distribution in a parallel plate, capacitively coupled laboratory plasma deposition reactor, and thus in changing the growth mode of silicon thin films from amorphous to nanocrystalline. The use of the VWT technique allows one to decouple the power injected into the plasma from the ion-bombardment energy at the film surface without changing any other deposition parameters, such as pressure or gas mixture. Material results are presented for an H2/SiH4 gas composition. A “peaks” type waveform increases the ion-bombardment energy at the RF electrode and reduces it at the substrate, resulting in more nanocrystalline growth. The use of a “valleys”-type waveform has the opposite effect, and results in more amorphous growth. We show the dependence of the process on silane dilution and pressure, including results on changes to the deposition rate when changing the excitation voltage waveform.

Type
Research Article
Copyright
Copyright © Materials Research Society 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Donkó, Z., Schulze, J., Heil, B.G., and Czarnetzki, U., J. Phys. D: Appl. Phys. 42 (2009) 025205.Google Scholar
2. Heil, B.G., Czarnetzki, U., Brinkmann, R.P., and Mussenbrock, T., J. Phys. D: Appl. Phys. 41 (2008) 165202.Google Scholar
3. Heil, B.G., Schulze, J., Mussenbrock, T., Brinkmann, R.P., and Czarnetzki, U., IEEE Trans.On Plasma Sci. 36 (2008) 1404.Google Scholar
4. Schulze, J., Schungel, E. and Czarnetzki, U., J. Phys. D: Appl. Phys. 42 (2009) 092005.Google Scholar
5. Wang, S.B. and Wendt, A.E. J. Appl.Phys. 88 (2000) 643.Google Scholar
6. Buzzi, F. L., Ting, Y.H., and Wendt, A.E., Plasma Sources Sci.Technol. 18, 025009 (2009).Google Scholar
7. Martin, I.T., Wank, M.A., Blauw, M.A., van Swaaij, R.A.C.M.M., Kessels, W.M.M., and van de Sanden, M.C.M., Plasma Sources Sci. Technol. 19 (2010) 015012.Google Scholar
8. Johnson, E.V, Verbeke, T., Vanel, J.C. and Booth, J.P., J. Phys. D: Appl. Phys. 43 (2010) 412001.Google Scholar
9. Schulze, J., Schungel, E., Donko, Z and Czarnetzki, U, Plasma Sources Sci.Technol. 20 (2011) 015017 Google Scholar
10. Patterson, M.M., Chu, H-Y. and Wendt, A. E., Plasma Sources Sci.Technol. 16 (2007) 257264 Google Scholar
12. Smit, C., van Swaaij, R.A.C.M.M., Donker, H., Petit, A.M.H.N., Kessels, W.M.M., and van de Sanden, M.C.M., J. Appl. Phys. 94 (2003) 3582.Google Scholar
13. Vepřek, S., Sarott, F.A., and Iqbal, Z., Phys. Rev. B 36, (1987) 3344.Google Scholar
14. Kondo, M., Fukawa, M., Guo, L., and Matsuda, A., J. Non-Cryst. Solids 266-69, (2000) 84.Google Scholar
15. Smets, A.H.M., and Kondo, M., J. Non-cryst. Solids 352 (2006) 937.Google Scholar
16. Bugnon, G., Feltrin, A., Meillaud, F., Bailat, J., and Ballif, C., J. Appl.Phys. 105 (2009) 064507.Google Scholar