Hostname: page-component-8448b6f56d-gtxcr Total loading time: 0 Render date: 2024-04-23T06:06:48.582Z Has data issue: false hasContentIssue false

The role of nitric oxide in female reproduction

Published online by Cambridge University Press:  10 October 2008

Carl P Weiner*
Affiliation:
Perinatal Research Laboratory, Division of Maternal Fetal Medicine and Reproductive Endocrinology, Department of Obstetrics and Gynecology, University of Iowa College of Medicine, Iowa City, United States of America
Loren P Thompson
Affiliation:
Perinatal Research Laboratory, Division of Maternal Fetal Medicine and Reproductive Endocrinology, Department of Obstetrics and Gynecology, University of Iowa College of Medicine, Iowa City, United States of America
Bradley J. Van Voorhis
Affiliation:
Perinatal Research Laboratory, Division of Maternal Fetal Medicine and Reproductive Endocrinology, Department of Obstetrics and Gynecology, University of Iowa College of Medicine, Iowa City, United States of America
*
Dr Carl P Weiner, Perinatal Research Laboratory, Division of Maternal Fetal Medicine, Department of Obstetrics and Gynecology, University of Iowa College of Medicine, Iowa City, IA 52242United States of America.

Extract

The cardiovascular system undergoes profound changes during pregnancy. Maternal intravascular volume begins to increase in the first trimester rising an average of 45% by term.1 Cardiac output increases similarly2 and is redistributed to organs whose functions are crucial for a successful pregnancy. In the guinea pig, uterine artery (UA) blood flow increases 3500%, while mesenteric and renal artery blood flows increase only 90% and 10% respectively.3 Blood flow to the trunk actually diminishes. The mechanism underlying this redistribution is unknown. Coupled with the rise in cardiac output is a decrease in the systemic pressor response to angiotensin II (AII), norepinephrine(NE), and epinephrine.4–8 There is also a decrease in the contraction response among some but not all vascular beds. For example, contraction of UA to NE and thromboxane is characteristically reduced by pregnancy, whereas the response of the carotid artery is unaltered8–10 Since pregnancy does not alter neuroeffector mechanisms of NE such as release, receptor sensitivity, and accumulation11, changes in sympathetic control during pregnancy must be dependent on alterations at sites other than the neuroeffector junction. We have hypothesized that the mechanisms which alter vascular reactivity during pregnancy also mediate the redistribution of maternal cardiac output.9 We have further hypothesized that many of these mechanisms involve endothelium-dependent factors which are modulated by sex hormones.

Type
Articles
Copyright
Copyright © Cambridge University Press 1995

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1Creasy, RK, Resnik, R. Maternal Fetal Medicine – Prinicples and Practice 2nd EdPhiladelphia PA, WB Saunders, 1989: 735.Google Scholar
2Morton, M, Tsang, H, Hohimer, R, Ross, D, Thornburg, K, Faber, J et al. Left ventricular size, output, and structure during guinea pig pregnancy. Am J Physiol 1984; 246: R40R48.Google ScholarPubMed
3Peeters, LLH, Grutters, G, Martin, CB Jr. Distribution of cardiac output in the unstressed pregnant guinea pig. Am J Obstet Gynecol 1980; 138: 1177–84.CrossRefGoogle ScholarPubMed
4Anderson, SG, Still, JG, Greiss, FC. Differential reactivity of the gravid uterine vasculatures: effects of norepinephrine. Am J Obstet Gynecol 1977; 129: 293–98.CrossRefGoogle ScholarPubMed
5Rosenfeld, CR, Barton, MD, Meschia, G. Effects of epinephrine on distribution of bood flow in the pregnant ewe. Am J Obstet Gynecol 1976; 124: 156–63.CrossRefGoogle Scholar
6Greiss, FC. Reactivities of the nongravid uterine vasculatures: effects of norepinephrine. Am J Obstet Gynecol 1978; 131: 778–79.CrossRefGoogle Scholar
7Barton, MD, Killam, AP, Meschia, G. Response of ovine uterine blood flow to epinephrine and norepinephrine. Proc Soc Exp Biol Med 1974; 145: 9961003.CrossRefGoogle ScholarPubMed
8Weiner, CP, Martinez, E, Chestnut, DH, Ghodsi, A. Effect of pregnancy on uterine and carotid artery response to norepinephrine, epinephrine, and phenylephrine in vessels with documented functional endothelium. Am J Obstet Gynecol 1989; 161: 1605–10.CrossRefGoogle ScholarPubMed
9Weiner, CP, Liu, KZ, Thompson, L, Herrig, J, Chestnut, D. Effect of pregnancy on endothelium and smooth muscle: their role in reduced adrenergic sensitivity. Am J Physiol 1991; H1275–83.Google ScholarPubMed
10Weiner, CP, Thompson, LP, Liu, KZ, Herrig, JE. Endothelium-derived relaxing factor and indomethacin-sensitive contracting factor alter arterial contractile responses to thromboxane during pregnancy. Am J Obstet Gynecol 1992; 166: 1171–81.CrossRefGoogle ScholarPubMed
11Hart, JL, Freas, W, Muldoon, SM. Neurovascular function in the rat during pregnancy. Am J Physiol 1986; 251: H1000H1008.Google ScholarPubMed
12Naden, RP, Rosenfeld, CR. Systemic and uterine responsiveness to angiotensin II and norepinephrine in oestrogen-treated nonpregnant sheep. Am J Obstet Gynecol 1985; 153: 417–25.CrossRefGoogle Scholar
13Meulmans, AL, Andries, LJ, Brutsaert, DL. Effect of oestrogen on alpha-adrenergic contraction. Arch Int Pharmacodyn Ther 1990; 305: 267.Google Scholar
14Resnik, R, Killam, AP, Battaglia, FC, Makowski, EL, Meschia, G. The stimulation of uterine blood flow by various estrogens. Endocrinol 1974; 94 1192–96CrossRefGoogle ScholarPubMed
15Greiss, FC, Anderson, SG. Effect of ovarian hormones on the uterine vascular bed. Am J Obstet Gynecol 1970; 107: 829–36.CrossRefGoogle ScholarPubMed
16Anderson, SG, Hackshaw, BT. The effect of estrogen on uterine blood flow and its distribution in nonpregnant ewes. Am J Obstet Gynecol 1974; 119: 589–95.CrossRefGoogle ScholarPubMed
17Weiner, CP, Knowles, RG, Moncada, S. Induction of nitric oxide synthases early in pregnancy. Am J Obstet Gynecol 1994; 171: 838–43.CrossRefGoogle ScholarPubMed
18Weiner, CP, Lizasoain, I, Baylis, S, Knowles, RG, Charles, I, Moncada, S. Induction of calcium-dependent nitric oxide synthases by sex hormones. Proc Natl Acad Sci USA 1994; 91: 52125216.CrossRefGoogle ScholarPubMed
19Dzau, VJ, Gibbons, GH, Cooke, JP, Omoigui, N. Vascular biology and medicine in the 1990s: scope, concepts, potentials, and perspectives. Circulation 1993; 87: 705–19.CrossRefGoogle Scholar
20Burnstock, G. Mechanisma of interaction of peptide and nonpeptide vascular neurotransmitter systems. J Cardiovasc Pharmacol 1987; 10 (Suppl. 12): S74S81.CrossRefGoogle Scholar
21Furchgott, RF, Zawadski, JV. The obligatory role of endothelial cells in the relaxation of arterial smooth muscle by acetylcholine. Nature 1980; 288: 373–76.CrossRefGoogle ScholarPubMed
22Tare, M, Parkington, HC, Coleman, HA, Nelid, TO, Dusting, GT. Hyperpolarization and relaxation of arterial smooth muscle caused by nitric oxide derived from the endothelium. Nature 1990; 346: 6971.CrossRefGoogle ScholarPubMed
23Yanagisawa, M, Kurihara, H, Kimura, S, Tomobe, Y, Kobayashi, M, Mitsui, Y et al. A novel potent vasoconstrictor peptide produced by vascular endothelial cells. Nature 1988; 332: 411–15.CrossRefGoogle ScholarPubMed
24Heistad, DD, Armstrong, ML, Marcus, ML, Piegors, DJ, Mark, AL. Augmented responses to vasoconstrictor stimuli in hypercholesterolemic and atherosclerotic monkeys. Circ Res 1984; 54: 711–18.CrossRefGoogle ScholarPubMed
25Vita, JA, Treasure, CB, Yeung, AC, Vekshtein, VI, Fantasia, GM, Fish, RD et al. Patients with evidence of coronary endothelial dysfunction as assessed by acetylcholine infusion demonstrate marked increase in sensitivity to constrictor effects of catecholamines. Circulation 1992; 85: 1390–97.CrossRefGoogle ScholarPubMed
26Durante, W, Sen, AK, Sunahara, FA. Impairment of endothelium-dependent relaxation in aortae from spontaneously diabetic rats. Br J Pharmacol 1988; 94: 463–68.CrossRefGoogle ScholarPubMed
27Janssens, WJ, Van Nueten, JM. The direct and amplifying effects of serotonin are increased with age in the isolated perfused kidney of Wistar and spontaneously hypertensive rats. Naunyn Schmiedebergs Arch Pharmacol 1986; 334: 327–32.CrossRefGoogle ScholarPubMed
28Lamping, KG, Dole, WP. Acute hypertension selectively potentiates constrictor responses of large coronary arteries to serotonin by altering endothelial function in vivo. Circ Res 1987; 61: 904–13.CrossRefGoogle ScholarPubMed
29Shimokawa, H, Aarhus, LL, Vanhoutte, PM. Porcine coronary arteries with regenerated endothelium have a reduced endothelium-dependent responsiveness to aggregating platelets and serotonin. Circ Res 1987; 61: 256–70.CrossRefGoogle ScholarPubMed
30Tesfamariam, B, Jakubowski, JA, Cohen, RA. Contraction of diabetic rabbit aorta caused by endothelium-derived PGH2-TxA2. Am J Physiol 1989; 257: H1327H1333.Google ScholarPubMed
31McCarthy, AL, Woolfson, RG, Raju, SK, Poston, L. Abnormal endothelial cell function of resistance arteries from women with preeclampsia. Am J Obstet Gynecol 1993; 168: 1323–30.CrossRefGoogle ScholarPubMed
32Knowles, RG, Moncada, S. Nitric oxide synthases in mammals. Biochem J 1994; 298: 249–58.CrossRefGoogle ScholarPubMed
33Rappoport, RM, Draznin, MB, Murad, F. Endothelium-dependent relaxation in rat aorta may be mediated through cyclic GMP-dependent protein phosphorylation. Nature 1983; 306: 174–76.CrossRefGoogle Scholar
34Rashatwar, SS, Cornwall, TI, Lincoln, TM. Effects of 8-bromo-cGMP on Ca2+ levels in vascular smooth muscle cells: possible regulation of Ca2+ ATPase by cGMP dependent protein kinase. Proc Natl Acad Sci USA 1987; 84: 5685–89.CrossRefGoogle ScholarPubMed
35Vrolix, M, Raeymakers, L, Wuytack, F, Hoffman, F, Casteels, R. Cyclic GMP-dependent protein kinase stimulates the plasmalemmal [Ca2+] pump of smooth muscle via phosphorylation of phosphatidylinositol. Biochem J 1988; 255: 855–63.CrossRefGoogle ScholarPubMed
36Ignarro, LJ, Kadowitz, PJ. The pharmacological and physiological role of cyclic GMP in vascular smooth muscle relaxation. Ann Rev Pharmacol Toxicol 1985; 25: 171–91.CrossRefGoogle ScholarPubMed
37Griffith, TM, Edwards, DH, Lewis, MJ, Newby, AC, Henderson, AH. The nature of endothelium-derived vascular relaxant factor. Nature 1984; 308: 645–47.CrossRefGoogle ScholarPubMed
38Gryglewski, RJ, Palmer, RMJ, Moncada, S. Superoxide anion is involved in the breakdown of endothelium-derived vascular relaxing factor. Nature 1986; 320: 454–56.CrossRefGoogle ScholarPubMed
39Ignarro, LJ, Byrns, RE, Buga, GM, Woods, KS. Endothelium-derived relaxing factor from pulmonary artery and vein possesses pharmacologic and chemical properties identical to those of nitric oxide radical. Circ Res 1987; 61: 866–79.CrossRefGoogle ScholarPubMed
40Kharitonov, VG, Sundquist, AR, Sharma, VS. Kinetics of nitric oxide autoxidation in aqueous solution. J Biol Chem 1994; 269: 5881–83.CrossRefGoogle ScholarPubMed
41Rubanyi, GM, Romero, JC, Vanhoutte, PM. Flow-induced release of endothelium-derived relaxing factor. Am J Physiol 1986; 250: H114547.Google ScholarPubMed
42Fiscus, RR. Molecular mechanisms of endothelium-mediated vasodilation. Semin Thromb Hemost 1988; 14: 1222.Google ScholarPubMed
43de Nucci, G, Gryglewski, RJ, Warner, TD, Vane, JR. Receptor-mediated release of endothelium-derived relaxing factor and prostacyclin from bovine aortic endothelial cells is coupled. Proc Natl Acad Sci USA 1988; 85: 2334–38.CrossRefGoogle ScholarPubMed
44Brunkwall, KS, Stanley, JC, Graham, LM, Burkel, WE. Influence of pressure, flow rate and pulsatility on release of 6-keto-PGF and thromboxane B2 in ex vivo-perfused canine veins. J Vasc Surg 1988; 7: 99107.Google Scholar
45Miller, VM, Vanhoutte, PM. Enhanced release of endothelium-derived factor(s) by chronic increases in blood flow. Am J Physiol 1988; 25: H446H451.Google Scholar
46Verbeuren, TJ, Jordaens, FH, Bult, H, Herman, AG. The endothelium inhibits the penetration of serotonin and norepinephrine in the isolated canine saphenous vein. J Pharmacol Exp Ther 1988; 244: 276–82.Google ScholarPubMed
47Archer, S. Measurement of nitric oxide in biologic models. FASEB J 1993; 7: 349–60.CrossRefGoogle Scholar
48Salter, M, Knowles, RG, Moncada, S. Widespread tissue distribution, species distribution and changes in activity of Ca2+ -dependent and Ca2+ -independent nitric oxide synthases. FEBS Lett 1991; 291: 145–49.CrossRefGoogle ScholarPubMed
49Rees, DD, Palmer, RMJ, Schulz, R, Hodson, HF, Moncada, S. Characterization of three inhibitors of endothelial nitric oxide synthase in vitro and in vivo. Br J Pharmacol 1990; 101: 746–52.CrossRefGoogle ScholarPubMed
50Palmer, RMJ, Ferrige, AG, Moncada, S. Nitric oxide release accounts for the biological activity of endothelium-derived relaxing factor. Nature 1987; 327: 524.CrossRefGoogle ScholarPubMed
51Bredt, DS, Hwang, PM, Glatt, C, Lowenstein, C, Reed, RR, Snyder, SH. Cloned and expressed nitric oxide synthase structurally resembles cytochrome P-450 reductase. Nature 1991; 351: 714–18.CrossRefGoogle ScholarPubMed
52Lowenstein, CJ, Glatt, GS, Bredt, DS, Snyder, SGH. Cloned and expressed macrophage nitric oxide synthase contrasts with the brain enzyme. Proc Natl Acad Sci USA 1992; 89: 6711–15.CrossRefGoogle ScholarPubMed
53Marsden, PA, Heng, HH, Scherer, SW, Stewart, RJ, Hall, AV, Shi, XM et al. Structure and chromosomal localization of the human constitutive endothelial nitric oxide synthase gene. J Biol Chem 1993; 268: 17478–88.CrossRefGoogle ScholarPubMed
54Nakane, M, Schmidt, HH, Pollock, JS, Forstermann, U, Murad, F. Cloned human brain nitric oxide synthase is highly expressed in skeletal muscle. FEBS Lett 1993; 316: 175–80.CrossRefGoogle ScholarPubMed
55Sessa, WC, Harrison, JK, Barber, CM, Zeng, D, Durieux, ME, D'Angelo, DD et al. Molecular cloning and expression of a cDNA encoding endothelial cell nitric oxide synthase. J Biol Chem 1992; 267: 15274–76.CrossRefGoogle ScholarPubMed
56Nunokawa, YN, Ishida, J, Tanaka, S. Cloning of inducible nitric oxide synthase in rat vascular smooth muscle cells. Biochem Biophys Res Commun 1993; 191: 8994.CrossRefGoogle ScholarPubMed
57Xie, Q-W, Cho, JH, Calaycey, J, Mumford, RA, Swiderek, KM, Lee, TD et al. Cloning and characterization of inducible nitric oxide synthase from mouse macrophages. Science 1992; 256: 225–28.CrossRefGoogle ScholarPubMed
58Wood, ER, Berger, H, Sherman, PA, Lapetina, EG. Hepatocytes and macrophages express an identical cytokine inducible nitric oxide synthase gene. Biochem Biophys Res Commun 1993; 191: 767–74.CrossRefGoogle ScholarPubMed
59Lamas, S, Marsden, PA, Li, GK, Tempst, P, Michel, T. Endothelial nitric oxide synthase: molecular cloning and characterization of a distinct constitutive enzyme isoform. Proc Natl Acad Sci USA 1992; 89: 6348–52.CrossRefGoogle ScholarPubMed
60Lyons, CR, Orloff, GJ, Cunningham, JM. Molecular cloning and functional expression of an inducible nitric oxide synthase from a murine macrophage cell line. J Biol Chem 1992; 267: 6370–74.CrossRefGoogle ScholarPubMed
61Janssens, SP, Simouchi, A, Quertermous, T, Block, DB, Block, KD. Cloning and expression of a cDNA encoding human endothelium-derived relaxing factor/nitric oxide synthase. J Biol Chem 1992; 267: 14519–22.CrossRefGoogle ScholarPubMed
62Geller, DA, Lownstein, CJ, Shapiro, RA, Nussler, AK, Di Silvio, M, Wang, SC et al. Molecular cloning and expression of inducible nitric oxide synthase from human hepatocytes. Proc Natl Acad Sci USA 1993; 90: 3491–95.CrossRefGoogle ScholarPubMed
63Chartrain, NA, Geller, DA, Koty, PP, Sitrin, NF, Nussler, AK, Hoffman, EP et al. Molecular cloning, structure and chromosomal localization of the human inducible nitric oxide synthase gene. J Biol Chem 1994; 269: 6765–72.CrossRefGoogle ScholarPubMed
64Galea, E, Reis, DJ, Feinstein, DL. Cloning and expression of inducible nitric oxide synthase from rat astrocytes. J Neurosci Res 1994; 37: 406–14.CrossRefGoogle ScholarPubMed
65Nadaud, S, Bonnardeaux, A, Lathrop, M, Soubrier, F. Gene Structure, polymorphism and mapping of the human endothelial nitric oxide synthase gene. Biochem Biophys Res Commun 1994; 198: 1027–33.CrossRefGoogle ScholarPubMed
66Schmidt, HHHW, Gagne, GD, Nakane, M, Pollock, JS, Miller, MF, Murad, F. Mapping of neural nitric oxide synthase in the rat suggests frequent co-localization with NADPH diaphorase but not soluble guanylate cyclase, and novel paraneural functions for nitrinergic signal transduction. J Histochem Cytochem 1992; 40: 1439–56.CrossRefGoogle Scholar
67Hattori, R, Sase, K, Eizawa, H, Kosuga, K, Aoyama, T, Inoue, R et al. Structure and function of nitric oxide synthases. Int J Cardiol 1994; 47: S71–75.CrossRefGoogle ScholarPubMed
68Garbers, DL. Guanylate cyclase receptor family. Recent Prog Horm Res 1990; 46: 8597.Google ScholarPubMed
69Nakane, M, Arai, K, Saheki, S, Kuno, T, Buechler, W, Murad, F. Molecular cloning and expression of cDNAs coding soluble guanylate cyclase from rat lung. J Biol Chem 1990; 265: 16841–45.CrossRefGoogle ScholarPubMed
70Ahmad, I, Barnstable, CJ. Differential laminar expression of particulate and soluble guanylate cyclase genes in rat retina. Exp Eye Res 1993; 56: 5162.CrossRefGoogle ScholarPubMed
71Shigematsu, Y, Vaughn, J, Frohlich, ED, Cole, FE. Adenosine 5'-triphosphate, phorbol ester and pertussis toxin effects on atrial natriuretic peptide stimulation of guanylate cyclase in a human renal cell line. Life Sci 1994; 54: 213–21.CrossRefGoogle Scholar
72Caulfield, MP. Muscarinic receptors-characterization, coupling and function. Pharmacol Ther 1993; 58: 319–79.CrossRefGoogle ScholarPubMed
73Ohno, M, Biggons, GH, Dzau, VJ, Cooke, JP. Shear stress elevates endothelial cGMP: role of a potassium channel and G protein coupling. Circulation 1993; 88: 193–97.CrossRefGoogle ScholarPubMed
74Das, R, Kanungo, MS. Activity of guanylate cyclase of various tissues and its in vitro modulation by effectors as a function of age of rats. Exp Gerontol 1981; 16: 405–14.CrossRefGoogle ScholarPubMed
75Vesely, DL, Hill, DE. Estrogens and progesterone increase fetal and maternal guanylate cyclase activity. Endocrinology 1980; 107: 21042109.CrossRefGoogle ScholarPubMed
76Amechi, OA, Butterworth, PJ, Thomas, PJ. Effects of gonadal steroids on guanylate cyclase activity in the developing and adult brain. Brain Res 1985; 342: 158–61.CrossRefGoogle ScholarPubMed
77Beatty, CH, Bocek, RM, Herrington, PT, Young, MK, Brenner, RM. Estradiol-17β and progesterone: effects on guanylate cyclase activity in the myometrium of macaques (40864). Proc Soc Exp Biol Med 1980; 164: 292–98.CrossRefGoogle Scholar
78Beavo, J, Reifsnyder, DH. Primary sequence of cyclic nucleotide phosphodiesterase isozymes and the design of selective inhibitors. Trends Pharmacol Sci 1990; 11: 150–55.CrossRefGoogle ScholarPubMed
79Leroy, MJ, Prichard, AL, Cabrol, D, Ferre, F. Cyclic 3':5' nucleotide phosphodiesterase in human myometrium at the end of pregnancy; partial purification and characterization of the different soluble isozymes. Gynecol Obstet Invest 1985; 20 27–3.CrossRefGoogle Scholar
80Thompson, WJ. Cyclic nucleotide phosphodiesterases: pharmacology, biochemistry and function. Pharmacol Ther 1991; 51: 1333.CrossRefGoogle ScholarPubMed
81Nicholson, CD, Challiss, RA, Shahid, M. Differential modulation of tissue function and therapeutic potential of selective inhibitors of cyclic nucleotide phosphodiesterase isoenzymes. Trends Pharmacol Sci 1991; 12: 1927.CrossRefGoogle ScholarPubMed
82Kopp, L, Paradiz, G, Tucci, JR. Urinary excretion of cyclic 3',5'-adenosine monophosphate and cyclic 3',5'-guanosine monophosphate during and after pregnancy. J Clin Endocrinol Metab 1977; 44: 590–94.CrossRefGoogle Scholar
83Conrad, KP, Joffe, GM, Kruszyna, H, Kruszyna, R, Rochelle, LG, Smith, RP et al. Identification of increased nitric oxide biosynthesis during pregnancy in rats. FASEB J 1993; 7 566–71.CrossRefGoogle ScholarPubMed
84Challis, JRG, Heap, RB, ILLingworth, DV. Concentrations of oestrogen and progesterone in the plasma of nonpregnant, pregnant and lactating guinea pigs. J Endocrinol 1971; 51: 333–45.CrossRefGoogle ScholarPubMed
85Goetz, RM, Morano, I, Calovini, T, Studer, R, Holtz, J. Increased expression of endothelial constitutive nitric oxide synthase in rat aorta during pregnancy. Biochem Biophys Res Commun 1994; 205: 905–10.CrossRefGoogle ScholarPubMed
86Schleicher, G, Stumpf, WE, Gurley, JM, Drews, U. Differential nuclear binding of [3H]testosterone and its metabolites to androgen and estrogen receptors in brain, pituitary, heart, kidney and accessory sex glands of the mouse: an autoradiographic study. J Steroid Biochem 1989; 33: 581–87.CrossRefGoogle ScholarPubMed
87Balthazart, J, Foidart, A, Surlemont, C, Harada, N. Neuroanatomical specificity in the co-localization of aromatase and estrogen receptors. J Neurobiol 1991; 22: 143–57.CrossRefGoogle ScholarPubMed
88Umans, JG, Lindeimer, MD, Barron, WM. Pressor effect of endothelium-derived relaxing factor inhibition in conscious virgin and gravid rats. Am J Physiol 1990; 259 F293F296.Google ScholarPubMed
89Ahokas, RA, Mercer, BM, Sibai, BM. Enhanced endothelium-derived relaxing factor activity in pregnant, spontaneously hypertensive rats. Am J Obstet Gynecol 1991; 165: 801807.CrossRefGoogle ScholarPubMed
90Yallampalli, C, Garfield, RE. Inhibition of nitric oxide synthesis in rats during pregnancy produces signs similar to those of preeclampsia. Am J Obstet Gynecol 1993; 169: 1316–20.CrossRefGoogle ScholarPubMed
91Molnar, M, Suto, T, Toth, T, Hertelendy, F. Prolonged blockade of nitric oxide synthesis in gravid rats produces sustained hypertension, proteinuria, thrombocytopenia, and intrauterine growth retardation. Am J Obstet Gynecol 1994; 170: 1458–66.CrossRefGoogle ScholarPubMed
92Baylis, C, Mitruka, B, Deng, A. Chronic blockade of nitric oxide synthesis in the rat produces systemic hypertension and glomerular damage. J Clin Invest 1992; 90: 278–81.CrossRefGoogle ScholarPubMed
93Diket, AL, Pierce, MR, Munshi, UK, Voelker, CA, Eloby-Childress, S, Greenberg, SS et al. Nitric oxide inhibition causes intrauterine growth retardation and hind-limb disruption in rats. Am J Obstet Gynecol 1994; 171 1243–50.CrossRefGoogle ScholarPubMed
94Bell, C, Brown, MJ. Arteriographic evidence for cholinergic dilator mechanism in uterine hyperaemia of pregnancy in the guinea-pig. J Reprod Fert 1971; 27: 5965.CrossRefGoogle ScholarPubMed
95Aisaka, K, Gross, SS, Griffith, OW, Levi, R. L-arginine availability determines the duration of acetylcholine-induced systemic vasodilation in vivo. Biochem Biophys Res Commun 1989; 163: 710–17.CrossRefGoogle ScholarPubMed
96Bell, C. Oestrogen-induced sensitization of the uterine artery of the guinea pig to acetylcholine. Br. J Pharmacol 1973; 49: 595601.CrossRefGoogle ScholarPubMed
97Van Orden, DE, Mathew, TS, Farley, DB, Markham, AL. Catechol estrogen synthesis and uterine vasodilation: role of uterine peroxidase. In: Proceedings of the Gynecologic Investigation Atlanta,Georgia, 1987; Abstract 406.Google Scholar
98Van Buren, GA, Yang, DS, Clark, KE. Estrogeninduced uterine vasodilation is antagonized by L-nitroarginine methyl ester, an inhibitor of nitric oxide synthesis. Am J Obstet Gynecol 1992; 167: 828–33.CrossRefGoogle ScholarPubMed
99Chaves, MC, Ribeiro, RA, Rao, VSN. Possible involvement of nitric oxide in estrogen-induced uterine edema in the immature rat. Braz J Med Biol Res 1993; 26: 853–57.Google ScholarPubMed
100Bell, C, Coffey, C. Factors influencing estrogen-induced sensitization to acetylcholine of the guinea pig uterine artery. J Reprod Fertil 1982; 66: 1337.Google Scholar
101Weiner, CP, Martinez, E, Zhu, LK, Ghodsi, A, Chestnut, DH. In vitro release of endothelium-derived relaxing factor by acetylcholine is increased during the guinea pig pregnancy. Am J Obstet Gynecol 1989; 161: 15991605.CrossRefGoogle ScholarPubMed
102Nelson, SH, Suresh, MS. Pregnancy; Endothelium-dependent cholinergic dilation of human uterine arteries. In: Proceedings of the Society of Obstetric Anesthesiologists and Perinatologists, 1989; Abstract 89.Google Scholar
103Weiner, CP, Thompson, LP, Liu, KZ, Herrig, JE. Pregnancy reduces serotonin-induced contraction of guinea pig uterine and carotid arteries. Am J Physiol 1992; 32: H1764H1769.Google Scholar
104Kim, TH, Weiner, CP, Thompson, LP. The effect of pregnancy on endothelium mediated contractile and relaxation responses of the guinea pig renal and mesenteric arteries. Am J Physiol 1994; 267 (Heart Circ Physiol 36): H41H47.Google Scholar
105Weiner, CP, Thompson, LP, Liu, KZ, Herrig, JE. Pregnancy enhances the biphasic response of uterine artery to bradykinin via alterations in both endothelium dependent factors and G-protein coupling (unpublished observations).Google Scholar
106Chu, ZM, Beilin, LJ. Effects of Hoe 140 on systemic depressor responses to bradykinin and mesenteric vascular reactivity in pregnant Wistar-Kyoto rats. Clin Exp Pharmacol Physiol 1994; 21: 137–40.CrossRefGoogle ScholarPubMed
107Moncada, S, Rees, DD, Schuls, R, Palmer, RMJ. Development and mechanism of a specific supersensitivity to nitrovasodilators after inhibition of vascular nitric oxide synthesis in vivo. Proc Natl Acad Sci USA 1991; 88: 2166–70.CrossRefGoogle ScholarPubMed
108Buga, GM, Griscavage, JM, Rogers, NE, Ignarro, LJ. Negative feedback regulation of endothelial cell function by nitric oxide. Circ Res 1993; 73: 808–12.CrossRefGoogle ScholarPubMed
109Hayashi, T, Fukuto, JM, Ignarro, LJ, Chaudhuri, G. Basal release of nitric oxide from aortic rings is greater in female rabbits than in male rabbits; Implications for atherosclerosis. Proc Natl Acad Sci USA 1992; 89: 11259–63.CrossRefGoogle ScholarPubMed
110Matsumoto, T, Kanamaru, K, Sugiyama, Y, Murata, Y. Endothelium-derived relaxation of the pregnant and nonpregnant canine uterine artery. J Reprod Med 1992; 37: 529–33.Google ScholarPubMed
111Jovanovic, A, Grbovic, L, Drekic, D, Novakovic, S. Muscarinic receptor function in the guinea pig uterine artery is not altered by pregnancy. Eur J Pharmacol 1994; 258: 185–94.CrossRefGoogle Scholar
112Jovanovic, A, Grobic, L, Tulic, I. Predominant role for nitric oxide in the relaxation induced by acetylcholine in human uterine artery. Human Reprod 1994; 9:387–93.CrossRefGoogle ScholarPubMed
113Jovanovic, A, Grbovic, L, Tulic, I. L-arginine induces relaxation of human uterine artery with both intact and denuded endothelium. Eur J Pharmacol 1994; 256: 103107.CrossRefGoogle ScholarPubMed
114Ramsay, M, Broughton, Pipkin F, Rubin, P. Comparative study of pressor and heart rate responses to angiotensin II and noradrenaline in pregnant and nonpregnant women. Clin Sci 1992; 82: 157–62.CrossRefGoogle Scholar
115Magness, RR, Rosenfeld, CR. Systemic and uterine responses to α-adrenergic stimulation in pregnant and nonpregnant ewes. Am J Obstet Gynecol 1986; 155: 897904.CrossRefGoogle ScholarPubMed
116Zuspan, FP, Cibils, LA, Pose, SV. Myometrial and cardiovascular responses to alterations in plasma epinephrine and norepinephrine. Am J Obstet Gynecol 1962; 84: 841–51.CrossRefGoogle ScholarPubMed
117Allen, R, Castro, L, Arora, C, Krakow, D, Huang, S, Platt, L. Endothelium-derived relaxing factor inhibition and the pressor response to norepinephrine in the pregnant rat. Obstet Gynecol 1994; 83: 9296.Google ScholarPubMed
118Weiner, CP, Thompson, LP, Liu, KZ, Herrig, JE. α2-adrenoceptor stimulated contraction is decreased and relaxation increased in the guinea pig uterine artery (UA) during pregnancy. J Soc Gynecol Invest 1995; 2(2): 298.CrossRefGoogle Scholar
119Steele, SC, Warren, AY, Johnson, IR. Effect of the vascular endothelium on norepinephrine-induced contractions in uterine radial arteries from the nonpregnant and pregnant uterus. Am J Obstet Gynecol 1993; 168: 1623–28.CrossRefGoogle Scholar
120D'Angelo, G, Osol, G. Regional variation in resistance artery diameter responses to alpha-adrenergic stimulation during pregnancy. Am J Physiol 1993; 264: H78H85.Google ScholarPubMed
121Weiner, CP. The role of serotonin in the preeclampsia-eclampsia syndrome. Cardiovasc Drugs Ther 1990; 4: 3743.CrossRefGoogle ScholarPubMed
122Lin, AL, Gonzalez, R, Carey, KD, Shain, SA. Estradiol-17β affects estrogen receptor distribution and elevates progesterone receptor content in baboon aorta. Arteriosclerosis 1986; 6: 495504.CrossRefGoogle ScholarPubMed
123Altura, BM, Altura, BT. Hetergeneity of drug receptors in different segments of rabbit thoracic aorta. Eur J Pharmacol 1970; 12: 4452.CrossRefGoogle Scholar
124Gregg, AR, Weiner, CP, Thompson, LP, Herrig, JE. Regionalization of endothelium-dependent relaxation in the thoracic aorta of pregnant and nonpregnant guinea pigs. J Vasc Res 1995; 32: 106–11.CrossRefGoogle ScholarPubMed
125Davidge, ST, McLaughlin, MK. Endogenous modulation of the blunted adrenergic response in resistance-sized mesenteric arteries in the pregnant rat. Am J Obstet Gynecol 1992; 167: 1691–98.CrossRefGoogle ScholarPubMed
126Griggs, KC, Conrad, KP, Mackey, K, McLaughlin, MK. Endothlial modulation of renal interlobar arteries from pregnant rats. Am J Physiol 1993; 265: F309–15.Google Scholar
127McCarthy, AL, Taylor, P, Graves, J, Raju, SK, Poston, L. Endothelium-dependent relaxation of human resistance arteries in pregnancy. Am J Obstet Gynecol 1994; 171: 1309–15.CrossRefGoogle ScholarPubMed
128McCarthy, AL, Woolfson, RG, Raju, SK, Poston, L. Abnormal endothelial cell function of resistance arteries from women with preeclampsia. Am J Obstet Gynecol 1993; 168: 1321–30.CrossRefGoogle ScholarPubMed
129Gisclard, V, Miller, VM, Vanhoutte, PM. Effect of 17β-estradiol on endothelium-dependent responses in the rabbit. J Pharmacol Exper Ther 1988; 244: 1922.Google ScholarPubMed
130Miller, VM, Aarkus, LL, Vanhoutte, RM. Effects of estrogens on adrenergic and endothelium-dependent responses in the ovarian artery of the rabbit. In: Halpern, W et al eds. Resistance arteries Syracuse, NY: Perinatology Press, 1988: 136–45.Google Scholar
131Nuno, D, Lamping, K. Constriction of coronary microvessels to endothelin is attenuated by 17β-estradiol in vitro. FASEB J 1993; 7: A559.Google Scholar
132Chu, ZM, Beilin, LJ. Mechanisms of vasodilation in pregnancy: studies of the role of prostaglandins and nitric oxide in changes of vascular reactivity in the in situ blood perfused mesentery of pregnant rats. Br J Pharmacol 1993; 109: 322–29.CrossRefGoogle ScholarPubMed
133Rolbin, SH, Hew, EM, Bernstein, A. Uterine relaxation can be life saving (letter). Can J Anaesth 1991; 38: 939–40.CrossRefGoogle Scholar
134Hendricks, SK, Ross, B, Colvard, MA, Cahill, D, Shy, K, Benedetti, TJ. Amylnitrite: use as a smooth muscle relaxant in difficult preterm cesarean section. Am J Perinatol 1992; 9: 289–92.CrossRefGoogle Scholar
135Lees, C, Campbell, S, Jauniaux, E, Brown, R, Ramsay, B, Gibb, D et al. Arrest of preterm labour and prolongation of gestation with glyceryl trinitrate, a nitric oxide donor [see comments]. Lancet 1994; 343: 1325–26.CrossRefGoogle ScholarPubMed
136Natuzzi, ES, Ursell, PC, Harrison, M, Bscher, C, Riemer, RK. Nitric oxide synthase activity in the pregnant uterus decreases at parturition. Biochem Biophys Res Commun 1993; 194: 18.CrossRefGoogle ScholarPubMed
137Sladek, SM, Regenstein, AC, Lykins, AC, Roberts, JM. Nitric oxide synthase activity in pregnant rabbit uterus decreases on the last day of pregnancy. Am J Obstet Gynecol 1993; 169: 1285–91.CrossRefGoogle ScholarPubMed
138Weiner, CP, Knowles, RG, Nelson, SE. Pregnancy increases cGMP in the myometrium independent of nitric oxide synthesis. Endocrinology 1994; 135: 2473–78.CrossRefGoogle ScholarPubMed
139San, Martin-Clark O, Weiner, CP. Pregnancy decreases nitric oxide (NO)-stimulated while increasing atriopeptin-stimulated guanylate cyclase activity (GCA) in guinea pig myometrium. J Soc Gynecol Invest 1995; 2: 253.Google Scholar
140Cassin, S. The role of eicosanoids and endothelium-dependent factors in regulation of the fetal pulmonary circulation. J Lipid Mediators 1993; 6(1–3): 477–85.Google ScholarPubMed
141Tiktinsky, MG, Cummings, JJ, Morin, FC. Acetylcholine increases pulmonary blood flow in intact fetuses via endothelium-dependent vasodilation. Am J Physiol 1992; 262: H406H410.Google ScholarPubMed
142Moore, P, Velvis, H, Heymann, MA. The effects of EDRF inhibition on resting pulmonary vascular tone in fetal lambs. Pediatr Res 1991; 29: 245A.Google Scholar
143Abman, SH, Chatfield, BA, Hall, SL, McMurtry, EF. Role of endothelium-derived relaxing factor during transition of pulmonary circulation at birth. Am J Physiol 1990; H1921H1927.Google ScholarPubMed
144Thompson, LP, Weiner, CP. Endothelium-derived relaxing factor inhibits norepinephrine contraction of fetal guinea pig arteries. Am J Physiol 1993; 264: H1139H1145.Google ScholarPubMed
145Coceani, F, Kelsey, L, Seidlitz, E. Occurrence of endothelium-derived relaxing factor - nitric oxide in the lamb ductus arteriosus. Can J Physiol Pharmacol 1994; 72: 8288.CrossRefGoogle ScholarPubMed
146Longo, LD, Hull, AD, Long, DM, Pearce, WJ. Cerebrovascular adaptations to high-altitude hypoxemia in fetal and adult sheep. Am J Physiol 1993; 264: R65R72.Google ScholarPubMed
147Pearce, WJ, Longo, LD. Developmental aspects of endothelial function. Sem Perinatol 1991; 15: 4048.Google ScholarPubMed
148Bogaert, GA, Kogan, BA, Mevorach, RA. Effects of endothelium-derived nitric oxide on renal hemodynamics and function in the sheep fetus. Pediatr Res 1993; 34: 755–61.CrossRefGoogle ScholarPubMed
149Myatt, L, Brewer, A, Brockman, DE. The action of nitric oxide in the perfused human fetal-placental circulation. Am J Obstet Gynecol 1991; 164: 687–92.CrossRefGoogle ScholarPubMed
150Chaudhuri, G, Cuevas, J, Buga, GM, Ignarro, LJ. NO is more important than PGI2 in maintaining low vascular tone in feto-placental vessels. Am J Physiol 1993; 265: H2036H2043.Google ScholarPubMed
151Van de Voorde, J, Vanderstichele, H, Leusen, I. Release of endothelium-derived relaxing factor from human umbilical vessels. Circ Res 1987; 60: 517–22.CrossRefGoogle ScholarPubMed
152Adamson, SI, Morrow, RJ, Bull, SB, Langille, BL. Vasomotor responses of the umbilical circulation in fetal sheep. Am J Physiol 1989; 256: R1056R1062.Google ScholarPubMed
153Myatt, L, Brewer, AS, Langdon, G, Brockman, DE. Attenuation of the vasoconstrictor effects of thromboxane and endothelin by nitric oxide in the human fetal-placental circulation. Am J Obstet Gynecol 1992; 166: 224–30.CrossRefGoogle ScholarPubMed
154Walters, WA. Autocoids affecting vascular tone in the human fetal extracorporeal circulation. Clin Exp Pharmacol Physiol 1992; 19: 38.CrossRefGoogle Scholar
155Walker, AM. Physiological control of the fetal cardiovascular system. In: Beard, RW, Nathanielsz, PW. eds, Fetal physiology and Medicine, New York and Basel: Marcel Dekker Inc, 1984; 287316.CrossRefGoogle Scholar
156Su, C, Pegram, BL, Bevan, JA, Assali, NS, Brinkman, CR. Reactivity of fetal vascular smooth muscle to sympathetic nerve stimulation and vasoactive agents. In: Longo, LD, Reneau, DD eds, Fetal and newborn cardiovascular physiology, New York and London: Garland STPM Press, 1976; 1 167–90.Google Scholar
157Rurak, DW, Richardson, BS, Patrick, JE, Carmichael, L, Homan, J. Blood flow and oxygen delivery to fetal organs and tissues during sustained hypoxemia. Am J Physiol 1990; 258: R116R122.Google ScholarPubMed
158Calvert, SA, Widness, JA, Oh, W, Stonestreet, BS. The effects of acute uterine ischemia on fetal circulation. Pediatr Res 1990; 27(6): 552–56.CrossRefGoogle ScholarPubMed
159Clark, KE, Irion, GL, Mack, CE. Differential responses of uterine and umbilical vasculatures to angiotensin II and norepinephrine. Am J Physiol 1990; 259: H197H203.Google ScholarPubMed
160Cohen, WR, Piasecki, GJ, Jackson, BT. Plasma catecholamines during hypoxemia in fetal lamb. Am J Physiol 1982; 243: R520R525.Google ScholarPubMed
161Rurak, DW. Plasma vasopressin levels during hypoxaemia and the cardiovascular effects of exogenous vasopressin in fetal and adult sheep. J Physiol (Lond) 1978; 277: 341–57.CrossRefGoogle ScholarPubMed
162Iwamoto, H, Rudolph, AM. Role of renin-angiotensin system in response to hemorrhage in fetal sheep. Am J Physiol 1981; 240: H848H854.Google ScholarPubMed
163Abman, SH, Chatfield, BA, Hall, SL, McMurtry, IF. Role of endothelium-derived relaxing factor during transition of pulmonary circulation at birth. Am J Physiol 1990; 259: H1921H1927.Google ScholarPubMed
164Abman, SH, Chatfield, BA, Hall, SL, McMurtry, IF. Role of endothelium-derived relaxing factor during transition of pulmonary circulation at birth. Am J Physiol 1990; 259: H1921H1927.Google ScholarPubMed
165Cassin, S. Role of the prostaglandins and thromboxanes in the control of the pulmonary circulation in the fetus and newborn. Semin Perinatol 1980; 4: 101107.Google ScholarPubMed
166Assali, NS, Johnson, GH, Brinkman, CR, Huntsman, DJ. Effects of bradykinin on the fetal pulmonary circulation. Am J Physiol 1971; 221: 1375–82.CrossRefGoogle Scholar
167Campbell, AGM, Dawes, GS, Fishman, AP, Hyman, AL, Perks, A. The release of a bradykinin-like pulmonary vasodilator substance in foetal and newborn lambs. J Physiol Lond 1968; 195: 8396.CrossRefGoogle Scholar
168Cohn, HE, Sacks, EJ, Heymann, MA, Rudolph, AM. Cardiovascular responses to hypoxaemia and acidemia in fetal lambs. Am J Obstet Gynecol 1974; 120: 817824.CrossRefGoogle ScholarPubMed
169Chang, JK, Moore, P, Fineman, JF, Soifer, SJ, Heymann, MA. K + channel pulmonary vasodilation in fetal lambs: role of endothelium-derived nitric oxide. J Appl Physiol 1992; 73: 188–94.CrossRefGoogle ScholarPubMed
170Gao, Y, Zhou, H, Raj, JU. Heterogeneity in role of endothelium-derived NO in pulmonary arteries and veins of full-term fetal lambs. Am J Physiol 1995; 268: H1586H1592.Google ScholarPubMed
171McQuestion, JA, Cornfield, DN, McMurtry, IF, Abman, SH. Effects of oxygen and exogenous L-arginine on EDRF activity in fetal pulmonary circulation. Am J Physiol 1993; 264: H865H871.Google Scholar
172Hartikainen-Sorri, AL, Vuolteenaho, O, Leppaluoto, J, Ruskoaho, H. Endothelin in umbilical artery vasospasm. Lancet 1991; 337: 619.CrossRefGoogle ScholarPubMed
173Schiff, E, Zalel, Y, Fieldman, SA, Eliezer, S. Fetal circulatory endothelin-1,2 in the midtrimester. Gynecol Obstet Invest 1993; 35: 185186.CrossRefGoogle ScholarPubMed
174Cassin, S, Kristova, V, Davis, T, Kadowitz, P, Gause, G. Tone-dependent response to endothelin in the isolated perfused fetal sheep pulmonary circulation in situ. J Appl Physiol 1991; 70: 12281234.CrossRefGoogle ScholarPubMed
175Chatfield, BA, McMurtry, IF, Hall, SL, Abman, SH. Hemodynamic effects of endothelin-1 on ovine fetal pulmonary circulation. Am J Physiol 1991; 261: R182R187.Google ScholarPubMed
176Tod, ML, Cassin, S. Endothelin-l induced pulmonary arterial dilation is reduced by Nω-nitro-L-arginine in fetal lambs. J Appl Physiol 1992; 72: 17301734.CrossRefGoogle Scholar
177Wong, J, Fineman, JR, Heymann, MA. The role of endothelin and endothelin receptor subtypes in regulation of fetal pulmonary vascular tone. Pediatr Res 1994; 35: 664670.CrossRefGoogle ScholarPubMed
178Wong, J, Vanderford, PA, Fineman, JR, Soifer, SJ. Developmental effects of endothelin-1 on the pulmonary circulation in sheep. Pediatr Res 1994; 36: 394401.CrossRefGoogle ScholarPubMed
179Rudolph, AM. Fetal and neonatal pulmonary circulation. Ann Rev Physiol 1979; 41: 383–95.CrossRefGoogle ScholarPubMed
180Lewis, AB, Heymann, MA, Rudolph, AM. Gestational changes in pulmonary vascular response in fetal lambs in utero. Circ Res 1976; 39: 536–41.CrossRefGoogle ScholarPubMed
181Abman, SH, Chatfield, BA, Rodman, DM, Hall, SL, McMurtry, IF. Maturational changes in endothelium-derived relaxing factor activity of ovine pulmonary arteries in vitro. Am J Physiol 1991; 260: L280L285.Google ScholarPubMed
182Cornfield, DN, Chatfield, BA, McQueston, JA, McMurtry, IF, Abman, SH. Effects of birth-related stimuli on L-arginine-dependend pulmonary vasodilation in ovine fetus. Am J Physiol 1992; 262: H14741481.Google ScholarPubMed
183Shaul, PW, Farrar, MA, Zellers, TM. Oxygen modulates endothelium-derived relaxing factor production in fetal pulmonary arteries. Am J Physiol 1992; 262: H355H364.Google ScholarPubMed
184Assali, NS, Kirschbaum, TH, Dilts, PV. Effects of hyperbaric oxygen on uteroplacental and fetal circulation. Circ Res 1968; 22: 573588.CrossRefGoogle ScholarPubMed
185Heymann, MA, Rudolph, MA, Nies, AS, Melmon, KL. Bradykinin production associated with oxygenation of the fetal lamb. Circ Res 1969; 25: 521–34.CrossRefGoogle ScholarPubMed
186Fineman, JR, Chang, R, Soifer, SJ. EDRF inhibition augments pulmonary hypertension in intact newborn lambs. Am J Physiol 1992; 262: H1365H1371.Google ScholarPubMed
187Fineman, JR, Heymann, MA, Soifer, SJ. N-nitro-L-arginine attenuates endothelium-dependent pulmonary vasodilation in lambs. Am J Physiol 1991; 260: H1299H1306.Google Scholar
188Davidson, D, Eldemerdash, A. Endothelium-derived relaxing factor: presence in pulmonary and systemic arteries of the newborn guinea pig. Pediatr Res 1990; 27: 128–32.CrossRefGoogle ScholarPubMed
189Leffler, CW, Tyler, TI, Cassin, S. Effect of indomethacin on pulmonary vascular response to ventilation of fetal goats. Prostaglandins 1984; 28: 877–87.CrossRefGoogle Scholar
190Morin, FC, Egan, EA, Norfleet, WT. Indomethacin does not diminish the pulmonary vascular response of the fetus to increased oxygen tension. Pediatr Res 1988; 24(6): 696700.CrossRefGoogle Scholar
191Leffler, CW, Hessler, JR, Green, RS. The onset of breathing at birth stimulates pulmonary vascular prostacyclin synthesis. Pediatr Res 1984; 18: 938–42.CrossRefGoogle ScholarPubMed
192Heymann, MA, Soifer, SJ. Control of the fetal and neonatal pulmonary circulation. In: Weir, EK, Reeves, JT eds, Pulmonary vascular physiology and pathophysiology, New York: Dekker, 1989; 3350.Google Scholar
193Lui, SF, Hislop, AA, Haworth, SG, Barnes, PJ. Developmental changes in endothelium-dependent pulmonary vasodilatation in pigs. Br J Pharmacol 1992; 106: 324–30.Google Scholar
194Abman, SH. Pathogenesis and treatment of neonatal and postnatal pulmonary hypertension. Current opinion in Pediatrics 1994; 6(3): 239–47.CrossRefGoogle ScholarPubMed
195Morin, FC, Egan, EA, Ferguson, W, Lundgren, CEG. The development of pulmonary vascular response to oxygen. Am J Physiol 1988; 254: H542H546.Google ScholarPubMed
196Shaul, PW, Farrar, MA, Magness, RR. Pulmonary endothelial nitric oxide production is developmentally regulated in the fetus and newborn., Am J Physiol 1993; 265: H1056–63.Google ScholarPubMed
197Zellers, TM, Vanhoutte, PM. Endothelium-dependent relaxations of piglet pulmonary arteries augment with maturation. Pediatr Res 1991; 30: 176–80.CrossRefGoogle ScholarPubMed
198Shaul, PW, Wells, LB. Oxygen modulates nitric oxide production selectively in fetal pulmonary endothelial cells. Am J Resp Cell Mol Biol 1994; 11: 432–8.CrossRefGoogle ScholarPubMed
199North, AJ, Star, RA, Brannon, TS, Ukiie, K, Wells, LB, Lowenstein, CJ et al. Nitric oxide synthase type I and type III gene expression are developmentally regulated in rat lung. Am J Physiol 1994; 266: L635L641.Google ScholarPubMed
200Halbower, AC, Tuder, M, Franklin, WA, Pollock, JS, Forstermann, U, Abman, SH. Maturation-related changes in endothelial nitric oxide synthase immunologicalization in developing ovine lung. Am J Physiol 1994; 267: L585–91.Google ScholarPubMed
201Shaul, PW, Farrar, MA, Magness, RR. Oxygen modulation of pulmonary arterial prostacyclin synthesis is developmentally regulated. Am J Physiol 1993; 265: H621–8.Google ScholarPubMed
202Brannon, TS, North, AJ, Wells, LB, Shaul, PW. Prostacyclin synthesis in ovine pulmonary artery is developmentally regulated by changes in cyclooxygenase-1 gene expression. J Clin Invest 1994; 93: 2230–35.CrossRefGoogle ScholarPubMed
203North, AJ, Brannon, TS, Wells, LB, Campbell, WB, Shaul, PW. Hypoxia stimulates prostacyclin synthesis in newborn pulmonary artery endothelium by increasing cyclooxygenase-1 protein. Circ Res 1994; 75: 3340.CrossRefGoogle ScholarPubMed
204Shaul, PW, Campbell, WE, Farrar, MA, Magness, RR. Oxygen modulates prostacyclin synthesis in ovine fetal pulmonary arteries by an effect on cyclooxygenase. J Clin Invest 1992; 90: 2147–55.CrossRefGoogle ScholarPubMed
205Acute and prolonged hypoxia attenuate endothelial nitric oxide production in rat pulmonary arteries by different mechanisms. J Cardiovasc Pharmacol 1993; 22: 819–27.CrossRefGoogle Scholar
206Fineman, JR, Wong, J, Morin, FC, Wild, LM, Soifer, SJ. Chronic nitric oxide inhibition in utero produces persistent pulmonary hypertension in newborn lambs. J Clin Invest 1994; 93: 2675–83.CrossRefGoogle ScholarPubMed
207Kinsella, JP, McQueston, JA, Rosenberg, AA, Abman, SH. Hemodynamic effects of exogenous nitric oxide in ovine transitional pulmonary circulation. Am J Physiol 1992; 263: H875H880.Google ScholarPubMed
208Kinsella, JP, Ivy, DD, Abman, SH. Inhaled nitric oxide improves gas exchange and lowers pulmonary vascular resistance in severe experimental hyaline membrane disease. Pediatr Res 1994; 36: 402408.CrossRefGoogle ScholarPubMed
209Kinsella, JP, Ivy, DD, Abman, SH. Ontogeny of NO activity and response to inhaled NO in the developing ovine pulmonary circulation. Am J Physiol 1994; 276: H1955H1961.Google Scholar
210Abman, SH, Griebel, JL, Parker, DK, Schmidt, JM, Swanton, D, Kinsella, JP. Acute effects of inhaled nitric oxide in children with severe hypoxerhic respiratory failure. J Pediatr 1994; 124: 881–88.CrossRefGoogle ScholarPubMed
211Rudolph, AM. Congenital diseases of the heart Chicago, IL: Year Book Medical Publishers, 1974: 128.Google Scholar
212Smith, GC, McGrath, JC. Characterisation of the effect of oxygen tension on response of fetal rabbit ductus arteriosus to vasodilators. Cardiovasc Res 1993; 27: 2205–11.CrossRefGoogle ScholarPubMed
213Nakanishi, T, Gu, H, Hagiwara, N, Momma, K. Mechanisms of oxygen-induced contraction of ductus arteriosus isolated from the fetal rabbit. Circ Res 1993; 72: 1218–28.CrossRefGoogle ScholarPubMed
214Smith, GC, McGrath, JC. Prostaglandin E2 and fetal oxygen tension synergistically inhibit response of isolated fetal rabbit ductus arteriosus to norepinephrine. J Cardiovasc Pharmacol 1991; 17: 861–66.CrossRefGoogle ScholarPubMed
215Coceani, F, Olley, PM. The control of cardiovascular shunts in the fetal and perinatal period. Can J Physiol Pharmacol 1988; 66: 11291134.CrossRefGoogle ScholarPubMed
216Coceani, F. Control of the ductus arteriosus - a new function for cytochrome P450, endothelin and nitric oxide. Biochemical Pharmacol 1994; 48: 1315–18.CrossRefGoogle ScholarPubMed
217Coceani, F, Kelsey, L, Ackerley, C, Rabinovitch, M, Gelboin, H. Cytochrome P450 during ontogenic development: occurrence in the ductus arteriosus and other tissues. Can J Physiol Pharmacol 1994; 72: 217–26.CrossRefGoogle ScholarPubMed
218Coceani, F, Kelsey, L, Seidlitz, E. Evidence for an effector role of endothelin in closure of the ductus arteriosus at birth. Can J Physiol Pharmacol 1992; 70: 1061–64.CrossRefGoogle ScholarPubMed
219Coceani, F. Control mechanisms for the perinatal pulmonary circulation. J Lipid Mediators 1993; 6: 473–76.Google ScholarPubMed
220Rand, MJ. Nitrergic transmission: nitric oxide as a mediator of nonadrenergic, non-cholinergic neuro-effector transmission. Clin Exp Pharmacol Physiol 1992; 19: 147–69.CrossRefGoogle ScholarPubMed
221Pearce, WJ, Hull, AD, Long, DM, White, CR. Effects of maturation on cyclic GMP-dependent vasodilation in ovine basilar and carotid arteries. Pediatr Res 1994; 36: 2533.CrossRefGoogle ScholarPubMed
222Pearce, WJ, Elliott, SF. Maturation enhances the sensitivity of ovine cerebral arteries to the ATP-sensitive potassium channel activator lemakalim. Pediatr Res 1994; 35: 729–32.CrossRefGoogle Scholar
223Eisenach, JC, Tong, C, Stump, DA, Block, SM. Vasopressin and fetal cerebrovascular regulation. Am J Physiol 1992; 263: R376R381.Google ScholarPubMed
224Ma, LJ, Ishizaki, Y, Morita, I, Murota, S. Presence of nitric oxide synthase activity in the neurons of the rat embryonal cerebrum. Neurosci Lett 1991; 132: 2325.CrossRefGoogle ScholarPubMed
225Kamitomo, M, Alonso, JG, Okai, T, Longo, LD, Gilbert, RD. Effects of long-term high-altitude hypoxemia on ovine fetal cardiac output and blood flow disruption. Am J Obstet Gynecol 1993; 169: 701707.CrossRefGoogle Scholar
226Lizasoain, I, Weiner, CP, Knowles, RG, Moncada, S. The ontogeny of cerebral and cerebellar nitric oxide synthase in the guinea pig and rat. Pediatr Res in press.Google Scholar
227Gonzalez-Hernandez, T, Gonzalez-Gonzalez, B, Mantolan-Sarmiento, B, Mendez-Medina, R, Ferres-Torres, R, Meyer, G. Transient NADPH-diaphorase activity in motor nuclei of the foetal human brain stem. Neuro Report 1994; 5: 758–60.Google ScholarPubMed
228Rudolph, AM, Heymann, MA. Circulatory changes during growth in the fetal lamb. Circ Res 1970; 26: 289–99.CrossRefGoogle ScholarPubMed
229Gilbert, RD. Control of fetal cardiac output during changes in blood volume. Am J Physiol 1980; 238: H80H86.Google ScholarPubMed
230Klopfenstein, HS, Rudolph, AM. Postnatal changes in the circulation and responses to volume loading in the sheep. Circ Res 1978; 42: 839845.CrossRefGoogle ScholarPubMed
231Iwamoto, HS., Oh, W, Rudolph, AM. Renal metabolism in fetal and newborn sheep. In: Jones, CT, Nathanielz, PW. eds, The physiological development of the fetus and newborn, London: Academic, 1985; 3740.Google Scholar
232Robillard, JE, Nakamura, KT, Matherne, GP, Jose, PA. Renal hemodynamics and functional adjustments to postnatal life. Semin Perinatol 1988; 12: 143–50.Google ScholarPubMed
233Aperia, A, Broberger, O, Herin, P, Joelsson, I. Renal hemodynamics in the perinatal period. Acta Physiol Scand 1977; 99: 261–69.CrossRefGoogle ScholarPubMed
234Beguin, F, Dunnihoo, DR, Quilligan, EJ. Effect of carbon dioxide elevation on renal blood flow in the fetal lamb in utero. Am J Obstet Gynecol 1974; 119: 630–37.CrossRefGoogle ScholarPubMed
235Gruskin, AB, Edelmann, CM, Yan, S. Maturational changes in renal blood flow in piglets. Pediatr Res 1970; 4: 713.CrossRefGoogle ScholarPubMed
236Cassin, S, Dawes, GS, Mott, JC, Ross, BB, Strang, LB. The vascular resistance of the foetal and newly ventilated lungs of the lamb. J Physiol (Lond) 1964; 171: 6179.CrossRefGoogle ScholarPubMed
237Thompson, LP, Weiner, CP. Developmental changes in acetylcholine relaxation of isolated renal arteries of fetal and neonatal guinea pigs. 41st Annual meeting of the Soc Gynecol Invest 1994; 259.Google Scholar
238Gitler, MS, Piccio, MM, Robillard, JE, Jose, PA. Characterization of renal alpha-adrenoceptor subtypes in sheep during development. Am J Physiol 1991; 260: R407R412.Google ScholarPubMed
239Berman, W, Goodlin, RC, Heymann, MA, Rudolph, AM. Effects of pharmacologic agents on umbilical blood flow in fetal lambs in utero. Biol Neonate 1978; 33: 225–35.CrossRefGoogle ScholarPubMed
240Vapaavouri, ED, Shinebourne, EA, Williams, RL, Heymann, MA, Rudolph, AM. Development of cardiovascular responses to autonomic blockade in intact fetal and neonatal lambs. Biol Neonate 1973; 22: 177–88.CrossRefGoogle ScholarPubMed
241Rudolph, AM. Factors affecting umbilical blood flow in the lamb in utero. In: Rooth, G, Bratteby, LE eds, Perinatal Medicine (5th Eur Cong Perinatal Med), Almqvist and Wiksell, 1976: 150–72.Google Scholar
242Graf, R, Langer, JU, Schonfelder, G, Oney, T, Hartel-Schenk, S, Reutter, W, Schmidt, HHHW. The extravascular contractile system in human placenta. Morphological and immunocytochemical investigations. Ann Embryol 1994; 190: 541–48.Google ScholarPubMed
243Chaudhuri, G, Furuya, K. Endothelium-derived vasoactive substances in fetal placental vessels. Sem Perinatol 1991; 15(1): 6367.Google ScholarPubMed
244Read, MA, Boura, AL, Walters, WA. Vascular actions of purines in the foetal circulation of the human placenta. Br J Pharmacol 1993; 110: 454–60.CrossRefGoogle ScholarPubMed
245Klockenbusch, W, Braun, MS, Schroder, H, Heckenberger, RE, Strobach, H, Schror, K. Prostacycin rather than nitric oxide lowers human umbilical artery tone in vitro Eur J Obstet Gynecol Reprod Biol 1992; 47: 109–15.CrossRefGoogle Scholar
246Paulick, RP, Meyers, RL, Rudolph, AM. Vascular responses of umbilical-placental circulation to vasodilators in fetal lambs. Am J Physiol 1991; H9H14.Google ScholarPubMed
247Klockenbusch, W, Strobach, H, Schror, K. Any physiological role for prostacyclin in regulation of fetal vessel tone? Agents & Actions - Supplements 1992; 37: 361–68.Google ScholarPubMed
248Izumi, H, Garfield, RE, Makino, Y, Shirakawa, K, Itoh, T. Gestational changes in endothelium-dependent vasorelaxation in human unbilical artery. Am J Obstet Gynecol 1994; 170: 236–46.CrossRefGoogle Scholar
249Conrad, KP, Vill, M, McGuire, PG, Dail, WG, Davis, AK. Expression of nitric oxide synthase by syncytiotrophoblast in human placental villi. FASEB J 1993; 7 1269–76.CrossRefGoogle ScholarPubMed
250Chang, JK, Roman, C, Heymann, MA.. Effect of endothelium-derived relaxing factor inhibition on the umbilical-placental circulation in fetal lambs in utero. Am J Obstet Gynecol 1992; 166: 727–34.CrossRefGoogle ScholarPubMed
251Glance, DG, Elder, MG, Myatt, L. Prostaglandin production and stimulation by angiotensin II in the isolated perfused human placental cotyledon. Am J Obstet Gynecol 1985; 151: 387–91.CrossRefGoogle ScholarPubMed
252Springall, DR, Riveros-Moreno, V, Buttery, L, Suburo, A, Bishop, AE, Merrett, M et al. Immunological detection of nitric oxide synthase(s) in human tissues using heterologous antibodies suggesting different isoforms. Histochemistry 1992; 98: 259–66.CrossRefGoogle ScholarPubMed
253Myatt, L, Brockman, DE, Langdon, G, Pollock, JS. Constitutive calcium-dependent isoform of nitric oxide synthase in the human placental villous vascular tree. Placenta 1993; 14: 373–83.CrossRefGoogle ScholarPubMed
254Myatt, L, Brewer, AS, Langdon, G, Brockman, DE. Attenuation of the vasoconstrictor effects of thromboxane and endothelin by nitric oxide in the human fetal-placental circulation. Am J Obstet Gynecol 1992; 166: 224–30.CrossRefGoogle ScholarPubMed
255Garvey, EP, Tuttle, JV, Covington, K, Merrill, BM, Wood, ER, Baylis, SA, Charles, IG. Purification and classification of the constitutive nitric oxide synthase from human placenta. Arch Biochem Biophys 1994; 311: 235–41.CrossRefGoogle Scholar
256Shukovski, L, Tsafriri, A. The involvement of nitric oxide in the ovulatory process in the rat. Endocrinology 1994; 135: 2287–90.CrossRefGoogle ScholarPubMed
257Sun, K, Smith, R, Robinson, PJ. Basal and KCI-stimulated corticotropin releasing hormone release from human placental syncytiotrophoblasts is inhibited by sodium nitroprusside. J Clin Endocrin Metab 1994; 79: 519–24.Google Scholar
258Weiner, CP, Baylis, SA, Lizasoain, I, Nelson, SE, Sandra, A. Ontologeny and expression of nitric oxide synthase. Society for the Study of Fetal Physiology Malmo, Sweden, 1995.Google Scholar
259Ellman, C, Corbett, JA, Misko, TP, McDaniel, M, Beckerman, KP. Nitric oxide mediates interleukin-1-induced cellular cytotoxicity in the rat ovary: a potential role for nitric oxide in the ovulatory process. J Clin Invest 1993; 92: 3053–56.CrossRefGoogle ScholarPubMed
260Ben-Shlomo, I, Kokia, E, Jackson, MJ, Adashi, EY, Payne, DW. Interleukin-1β stimulates nitrite production in the rat ovary: evidence for heterologous cell-cell interaction and for insulin-mediated regulation of the inducible isoform of nitric oxide synthase. Biol Reprod 1994; 51: 310–18.CrossRefGoogle Scholar
261Van Voorhis, BJ, Nelson, S, Moore, K, Weiner, CP. Expression of nitric oxide synthase messenger RNA in the rat ovary - effect of gonadotropin stimulation. Society of Gynecologic Investigation, 1995; Abstract 70.CrossRefGoogle Scholar
262Van Voorhis, BJ, Dunn, MS, Snyder, GD, Weiner, CP. Nitric oxide: an autocrine regulator of human granulosa-luteal cell steroidogenesis. Endocrinology 1994; 135 17991806.CrossRefGoogle ScholarPubMed
263Van Voorhis, BJ, Dunn, MS, Weiner, CP, Snyder, GD. Nitric oxide -a possible autocrine regulator of granulosa cell steroidogenesis. Xth Ovarian Workshop, Serono Symposia,July 1994.CrossRefGoogle Scholar
264Hurwitz, A, Loukides, J, Ricciarelli, E, Botero, L, Katz, E, McAllister, JM et al. Human intraovarian interleukin-1 system: highly compartmentalized and hormonally dependent regulation of the genes encoding IL-1, its recepter and its receptor antagonist. J Clin Invest 1992; 89: 1746–54.CrossRefGoogle Scholar
265Ben-Schlomo, I, Adashi, EY, Payne, DW. The morphogenic/cytotoxic and prostaglandin-stimulating activities of interleukin-1β in the rat ovary are nitric oxide independent. J Clin Invest 1994; 94: 1463–69.CrossRefGoogle Scholar
266Ellinwood, WE, Nett, TM, Niswender, GD. Ovarian vasculature: stucture and finction. In: Jones, RE, ed The Vertebrate Ovary, New York; Plenum Press, 1978: 583614.Google Scholar
267Takagi, K, Isobe, Y, Yasukawa, K, Okouchi, E, Suketa, Y. Nitric oxide blocks the cell cycle of mouse macrophage-like cells in the early G2 + M phase. FEBS Lett 1994; 340: 159–62.CrossRefGoogle ScholarPubMed
268Garg, UC, Hassid, A. Nitric oxide-generating vasodilators and 8-bromo-cyclic guanosine monophosphate inhibit mitogenesis and proliferation of cultured rat vascular smooth muscle cells. J Clin Invest 1989; 83: 1774–77.CrossRefGoogle ScholarPubMed
269Snyder, GD, Holmes, RW, Van Voorhis, BJ. Nitric oxide (NO) inhibition of aromatase. Abstract. Endocrine Society 77th Annual Meeting1995; 3: 596.Google Scholar
270Stadler, J, Trockfeld, J, Schmalix, WA, Brill, T, Siewert, JR, Greim, H et al. Inhibition of cytochromes P4501A by nitric oxide. Proc Natl Acad Sci USA 1994; 91: 3559–63.CrossRefGoogle ScholarPubMed
271Khatsenko, OG, Gross, SS, Rifkind, AB, Vane, JR. Nitric oxide is a mediator of the decrease in cytochrome P450-dependent metabolism caused by immunostimulants. Proc Natl Acad Sci USA 1993; 90: 11147–51.CrossRefGoogle ScholarPubMed
272Park, SK, Lin, HL, Murphy, S. Nitric oxide limits transcriptional induction of nitric oxide synthase in CNS glial cells. Biochem Biophys Res Commun 1994; 201: 762–68.CrossRefGoogle ScholarPubMed
273Bredt, DS, Hwang, PM, Snyder, SH. Localization of nitric oxide synthase indicating a neural role for nitric oxide. Nature (London) 1990; 347: 768770.CrossRefGoogle ScholarPubMed
274Rettori, V, Belova, N, Dees, WL, Nyberg, CL, Gimeno, M, McCann, SM. Role of nitric oxide in the control of luteinizing hormone-releasing hormone release in vivo and in vitro. Proc Natl Acad Sci USA 1993; 90: 10130–34.CrossRefGoogle ScholarPubMed
275Ceccatelli, S, Hulting, A, Zhang, X, Gustafsson, L, Villar, M, Hokfelt, T. Nitric oxide synthase in the rat anterior pituitary gland and the role of nitric oxide in regulation of luteinizing hormone secretion. Proc Natl Acad Sci USA 1993; 90: 11292–96.CrossRefGoogle ScholarPubMed
276Rettori, V, Gimeno, M, Lyson, K, McCann, SM. Nitric oxide mediates norepinephrine-induced prostaglandin E2 release from the hypothalamus. Proc Natl Acad Sci USA 1992; 89: 11543–46.CrossRefGoogle ScholarPubMed
277Bonavera, JJ, Sahu, A, Kalra, PS, Kalra, SP. Evidence that nitric oxide may mediate the ovarian steroid-induced luteinizing hormone surge: involvement of excitatory amino acids. Endocrinology 1993; 133: 2481–87.CrossRefGoogle ScholarPubMed
278Duvilanski, BH, Zambruno, C, Seilicovich, A, Pisera, D, Lasago, M, Del, C et al. Role of nitric oxide in control of prolactin release by the adenohypophysis. Proc Natl Acad Sci USA 1995; 92: 170–74.CrossRefGoogle ScholarPubMed
279Karanth, S, Lyson, K, McCann, SM. Role of nitric oxide in interleukin 2-induced corticotropin-releasing factor release from incubated hypothalami. Proc Natl Acad Sci USA 1993; 90: 3383–87.CrossRefGoogle ScholarPubMed
280Aguila, MC. Growth hormone-releasing factor increases somatostatin release and mRNA levels in the rat periventricular nucleus vis nitric oxide by activation of guanylate cyclase. Proc Natl Acad Sci USA 1994; 94: 782–86.CrossRefGoogle Scholar