Hostname: page-component-8448b6f56d-gtxcr Total loading time: 0 Render date: 2024-04-24T23:13:46.229Z Has data issue: false hasContentIssue false

MOCVD HTSC Precursor Delivery Monitored By UV Spectroscopy

Published online by Cambridge University Press:  10 February 2011

Brian J. Rappoli
Affiliation:
Chemistry Division, Naval Research Laboratory, Washington, D.C. 20375
William J. DeSisto
Affiliation:
Electronics Science and Technology Division, Naval Research Laboratory, Washington, D.C. 20375
Get access

Abstract

UV spectroscopy has been used as an in situ diagnostic to measure the gas phase concentration of 2,2,6,6-tetramethyl-3,5-heptanedionate (thd) complexes of Ba, Cu and Y in metalorganic chemical vapor deposition (MOCVD) bubbler effluent. These precursors for MOCVD synthesis of YBa2Cu37−δ (YBCO) show marked instability in gas phase concentration as a function of time during bubbler purge. The UV diagnostic technique has been applied to both a small scale test system and a commercial scale MOCVD reactor.

Type
Research Article
Copyright
Copyright © Materials Research Society 1996

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1 Sato, R., Takahashi, K., Yoshino, M., Kato, H. and Ohshima, S., Jpn. J. Appl. Phys. 32, 1590 (1993).Google Scholar
2 Matsuno, S., Uchikawa, F. and Yoshizaki, K., Jpn. J. Appl. Phys. 29 (1990) 947.Google Scholar
3 Schulz, D. L., Hinds, B. J., Neumayer, D. A., Stern, C L. and Marks, T. J., Chem. Mater. 5, 1605 (1993).Google Scholar
4 Hinds, B. J., Shulz, D. L., Neumayer, D. A., Han, B., Marks, T. J., Wang, Y. Y., Dravid, V. P., Schindler, J. L., Hogan, T. P. and Kannewurf, C. R., Appl. Phys. Lett. 65, 231 (1994).Google Scholar
5 Hiskes, R., DiCarolis, S.A., Young, J.L., Laderman, S.S., Jacowitz, R.D., and Taber, R.C., Appl. Phys. Lett. 59, 606 (1991).Google Scholar
6 Zhang, J., Gardiner, R. A., Kirlin, P. S., Boerstler, R. W. and Steinbeck, J., Appl. Phys. Lett. 61, 2884 (1992).Google Scholar
7 Hebner, G. A., Kileen, K. P. and Biefeld, R. M., J. Crystal Growth 98, 293 (1989).Google Scholar
8 Dunn, T. M., Modern Coordination Chemistry, Wiley-lntrerscience, New York, 1960.Google Scholar
9 Ballhausen, C. J., Introduction to Ligand Field Theory, McGraw-Hill, New York, 1962.Google Scholar
10 Harima, H., Ohnishi, H., Hanaoka, K., Tachibana, K. and Goto, Y., Jpn. J. App. Phys. 30, 1946 (1991).Google Scholar
11 Busch, H., Fink, A., Müller, A. and Samwer, K., Supercond. Sci. Technol. 6, 42 (1992).Google Scholar
12 Chou, K. and Tsai, G., Theromchimica. Acta 240, 129 (1994)Google Scholar
13 Stagg, J. P., Christer, J., Thrush, E. J. and Crawley, J., J. Crystal Growth 120, 98 (1992).Google Scholar
14 Rappoli, B. J. and DeSisto, W. J., Appl. Phys. Lett., submitted.Google Scholar
15 Gleizes, A., Sans-Lenain, S., Medus, D., Hovnanian, N., Miele, P. and Foulon, J. D., Inorg. Chim. Acta 209, 47 (1993).Google Scholar
16 Emerson, D. W., Titus, R. L. and Gonzalez, R. M., J. Org. Chem. 56, 5301 (1991).Google Scholar
17 Waffenschmidt, E., Musolf, J., Heuken, M. and Heime, K., J. Supercond. 5, 119 (1992).Google Scholar
18 Yuhya, S., Kikuchi, K., Yoshida, M., Sugawara, K. and Shiohara, Y., Mol. Cryst. Liq. Cryst. 184, 231 (1990).Google Scholar