Hostname: page-component-8448b6f56d-xtgtn Total loading time: 0 Render date: 2024-04-19T20:54:51.146Z Has data issue: false hasContentIssue false

Middle Holocene environmental change in central Korea and its linkage to summer and winter monsoon changes

Published online by Cambridge University Press:  20 January 2017

Jaesoo Lim
Affiliation:
Geological Research Division, Korea Institute of Geoscience and Mineral Resources, Daejeon 305-350, Republic of Korea
Dong-Yoon Yang*
Affiliation:
Geological Research Division, Korea Institute of Geoscience and Mineral Resources, Daejeon 305-350, Republic of Korea
Jin-Young Lee
Affiliation:
Geological Research Division, Korea Institute of Geoscience and Mineral Resources, Daejeon 305-350, Republic of Korea
Sei-Sun Hong
Affiliation:
Geological Research Division, Korea Institute of Geoscience and Mineral Resources, Daejeon 305-350, Republic of Korea
In Kwon Um
Affiliation:
Petroleum & Marine Research Division, Korea Institute of Geoscience and Mineral Resources, Daejeon 305-350, Republic of Korea
*
*Corresponding authors. Fax: + 82 42 868 3037.E-mail addresses:limjs@kigam.re.kr (J. Lim), ydy@kigam.re.kr (D.-Y. Yang).

Abstract

To trace the surficial responses of lowlands to past climate change, we investigated δ13C in total organic carbon (TOC), C/N ratios, magnetic susceptibility (MS), and silicon (Si) intensity (directly proportional to concentration) in wetland sediments collected from the Gimpo area of central Korea, covering 6600–4600 cal yr BP. Two organic layers with high TOC%, negatively depleted δ13CTOC values (− 27 to − 29‰), low MS values, and low Si intensities were found at 6200–5900 and 5200–4800 cal yr BP, respectively. These middle Holocene wet periods corresponded to relatively intensified summer monsoon and solar activity periods. The intervening dry period (5900–5200 cal yr BP) with high MS, high Si, and low TOC% corresponded to an intensified dust-activity interval and stronger winter monsoon. This multi-centennial climatic fluctuation of wet periods (6200–5900 cal yr BP and 5200–4800 cal yr BP) and an intervening dry period (5900–5200 cal yr BP) in central Korea was more synchronous with climate change in the arid inner part of China than with that in South China, suggesting possible strong high-latitude-driven climatic influences (e.g., North Atlantic cooling events) during the middle Holocene.

Type
Articles
Copyright
University of Washington

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

An, Z.S. (2000). The history and variability of the East Asian paleomonsoon climate. Quaternary Science Reviews 19, 171187.CrossRefGoogle Scholar
An, Z.S. Porter, S.C. (1997). Millennial-scale climatic oscillations during the last interglaciation in central China. Geology 25, 7 603606.Google Scholar
An, Z.S. Kukla, G. Porter, S.C. Xiao, J.L. (1991). Late Quaternary dust flow on the Chinese loess plateau. Catena 18, 125132.CrossRefGoogle Scholar
An, Z.S. Kukla, G.J. Porter, S.C. Xiao, J.L. (1991). Magnetic susceptibility evidence of monsoon variation on the Loess Plateau of central China during the last 130,000 years. Quaternary Research 36, 2936.CrossRefGoogle Scholar
An, Z.S. Huang, Y. Liu, W. Guo, Z. Steven, C. Li, L. Warren, P. Ning, Y. Cai, Y. Zhou, W. Lin, B. Zhang, Q. Cao, Y. Qiang, X. Chang, H. Wu, Z. (2005). Multiple expansion of C4 plant biomass in East Asia since 7 Ma coupled with strengthened monsoon circulation. Geology 33, 705708.Google Scholar
An, Z.S. Porter, S.C. Kutzbach, J.E. Xiao, W. Suming, W. Xiaodong, L. Xiaoqiang, L. Zhou, W.J. (2000). Asynchronous Holocene optimum of the East Asian monsoon. Quaternary Science Reviews 19, 743762.CrossRefGoogle Scholar
Aucour, A.M. Bonnefille, R. Hillaire-Marcel, C. (1999). Sources and accumulation rates of organic carbon in an equatorial peat bog (Burundi, East Africa) during the Holocene: carbon isotope constraints. Palaeogeography, Palaeoclimatology, Palaeoecology 150, 179189.CrossRefGoogle Scholar
Bond, G. Showers, W. Cheseby, M. Lotti, R. Almasi, P. deMenocal, P. Priore, P. Cullen, H. Hajdas, I. Bonani, G. (1997). A pervasive millennial-scale cycle in North Atlantic Holocene and glacial climates. Science 278, 12571266.CrossRefGoogle Scholar
Bond, G. Kromer, B. Beer, J. Muscheler, R. Evans, M.N. Showers, W. Hoffmann, S. Lotti-Bond, R. Hajdas, I. Bonani, G. (2001). Persistent solar influence on North Atlantic climate during the Holocene. Science 294, 21302136.CrossRefGoogle ScholarPubMed
Cai, Y.J. Tan, L.C. Cheng, H. An, Z.S. Edwards, R.L. Kelly, M.J. Kong, X.G. Wang, X.F. (2010). The variation of summer monsoon precipitation in central China since the last deglaciation. Earth and Planetary Science Letters 291, 2131.CrossRefGoogle Scholar
Cerling, T.E. Harris, J.M. MacFadden, B.J. Leakey, M.G. Quade, J. Eisenmann, V. Ehleringer, J.M. (1997). Global vegetation change through the Miocene/Pliocene boundary. Nature 389, 153158.CrossRefGoogle Scholar
Chang, N.-K. Lee, S.-K. (1983). Studies on the classification, productivity and distribution of C3, C4 and CAM plants in vegetations of Korea: I. C3 and C4 type plants. Korean Journal of Ecology 6, 6269. (in Korean)Google Scholar
Chang, N.-K. Lee, S.-K. (1983). Studies on the classification, productivity and distribution of C3, C4 and CAM plants in vegetations of Korea: III. The distribution of C3 and C4 type plants. Korean Journal of Ecology 6, 128141.(in Korean)Google Scholar
Croudace, I.W. Rindby, A. Rothwell, R.G. (2006). ITRAX: description and evaluation of a new multi-function X-ray core scanner. Rothwell, R.G. New techniques in sediment core analysis. Geological Society Special Publication 267, Geological Society of London, London, UK. 5163. http://dx.doi.org/10.1144/GSL.SP.2006.267.01.04CrossRefGoogle Scholar
Dykoski, C.A. Edwards, R.L. Cheng, H. Yuan, D. Cai, Y. Zhang, M. Lin, Y. Qing, J. An, Z. Revenaugh, J. (2005). A high-resolution, absolute-dated Holocene and deglacial Asian monsoon record from Dongge Cave, China. Earth and Planetary Science Letters 233, 7186.CrossRefGoogle Scholar
Farquhar, G.D. O'Leary, M.H. Berry, J.A. (1982). On the relationship between carbon isotope discrimination and the intercellular carbon dioxide concentration in leaves. Australian Journal of Plant Physiology 9, 121137.Google Scholar
Hao, Q.Z. Guo, Z.T. (2005). Spatial variations of magnetic susceptibility of Chinese loess for the last 600 kyr: implications for monsoon evolution. Journal of Geophysical Research 110, B12101 CrossRefGoogle Scholar
Hatté, C. Guiot, J. (2005). Palaeoprecipitation reconstruction by inverse modelling using the isotopic signal of loess organic matter: application to the Nußloch loess sequence (Rhine Valley, Germany). Climate Dynamics 25, 315327. http://dx.doi.org/10.1007/s00382-005-0034-3CrossRefGoogle Scholar
Hatté, C. Antoine, P. Fontugne, M. Lang, A. Rousseau, D.D. Zöller, L. (2001). δ13C of loess organic matter as a potential proxy for paleoprecipitation. Quaternary Research 55, 3338.CrossRefGoogle Scholar
Hong, Y.T. Hong, B. Lin, Q.H. Shibata, Y. Hirota, M. Zhu, Y.X. Leng, X.T. Wang, Y. Wang, H. Yi, L. (2005). Inverse phase oscillations between the East Asian and Indian Ocean summer monsoons during the last 12000 years and paleo-El Nino. Earth and Planetary Science Letters 231, 337346.CrossRefGoogle Scholar
Huang, Y. Street-Perrott, F.A. Metcalfe, S.E. Brenner, M. Moreland, M. Freeman, K.H. (2001). Climate change as the dominant control on glacial-interglacial variations in C3 and C4 plant abundance. Science 293, 16471651.CrossRefGoogle ScholarPubMed
Hwang, S.I. (1998). The Holocene depositional environment and sea-level change at Ilsan area. Journal of the Korean Geographical Society 70, 143163. (in Korean with English abstract)Google Scholar
Hwang, S.I. Yoon, S.O. Jo, W.R. (1997). The change of the depositional environment on the Dodaecheon River basin during the middle Holocene. Journal of the Korean Geographical Society 32, 403420. (in Korean with English abstract)Google Scholar
Jo, K. Woo, K.S. Lim, H.S. Cheng, H. Edwards, R.L. Wang, Y. Jiang, X. Kim, R. Lee, J.I. Yoon, H.I. Yoo, K.-C. (2011). Holocene and Eemian climatic optima in the Korean Peninsula based on textural and carbon isotopic records from the stalagmite of the Daeya Cave, South Korea. Quaternary Science Reviews 30, 12181231.CrossRefGoogle Scholar
Jo, K. Woo, K.S. Yi, S. Yang, D.Y. Lim, H.S. Wang, Y. Cheng, H. Edwards, R.L. (2014). Mid-latitude interhemispheric hydrologic seesaw over the past 550,000 years. Nature http://dx.doi.org/10.1038/nature13076CrossRefGoogle ScholarPubMed
Jun, C.P. Yi, S. Lee, S.J. (2010). Palynological implication of Holocene vegetation and environment in Pyeongtaek wetland, Korea. Quaternary International 227, 6874.CrossRefGoogle Scholar
Kurosaki, Y. Mikami, M. (2003). Recent frequent dust events and their relation to surface wind in east Asia. Geophysical Research Letters 30, 14 1736 http://dx.doi.org/10.1029/2003GL017261CrossRefGoogle Scholar
Lamb, A. Wilson, G.P. Leng, M.J. (2006). A review of coastal palaeoclimate and relative sea-level reconstructions using δ13C and C/N ratios in organic material. Earth-Science Reviews 75, 2957.CrossRefGoogle Scholar
LeGrande, A.N. Schmidt, G.A. (2009). Sources of Holocene variability of oxygen isotopes in paleoclimate archives. Climate of the Past 5, 441455.CrossRefGoogle Scholar
Liang, L. Sun, Y. Yao, Z. Liu, Z. Liu, Y. Wu, F. (2012). Evaluation of high-resolution elemental analyses of Chinese loess deposits measured by X-ray fluorescence core scanner. Catena 92, 7582.CrossRefGoogle Scholar
Lim, J. Fujiki, T. (2011). Vegetation and climate variability in East Asia driven by low-latitude oceanic forcing during the middle to late Holocene. Quaternary Science Reviews 30, 24872497.CrossRefGoogle Scholar
Lim, J. Matsumoto, E. (2006). Bimodal grain-size distribution of aeolian quartz in a maar of Cheju Island, Korea, during the last 6500 years: its flux variation and controlling factor. Geophysical Research Letters 33, L21816 http://dx.doi.org/10.1029/2006GL027432CrossRefGoogle Scholar
Lim, J. Matsumoto, E. Kitagawa, H. (2005). Eolian quartz flux variations in Cheju Island, Korea, during the last 6500 yr and a possible Sun–monsoon linkage. Quaternary Research 64, 1220.CrossRefGoogle Scholar
Lim, J. Nahm, W.H. Kim, J.K. Yang, D.Y. (2010). Regional climate-driven C3 and C4 plant variation in the Cheollipo area, Korea, during the late Pleistocene. Palaeogeography, Palaeoclimatology, Palaeoecology 298, 370377.CrossRefGoogle Scholar
Lim, J. Yi, S. Nahm, W.-H. Kim, J.-Y. (2012). Holocene millennial-scale vegetation changes in the Yugu floodplain, Kongju area, central South Korea. Quaternary International 254, 9298.CrossRefGoogle Scholar
Liu, X.D. Yin, Z.Y. Zhang, X.A. Yang, X.C. (2004). Analyses of the spring dust storm frequency of northern China in relation to antecedent and concurrent wind, precipitation, vegetation, and soil moisture conditions. Journal of Geophysical Research 109, D16210 http://dx.doi.org/10.1029/2004JD004615CrossRefGoogle Scholar
Liu, W.G. Feng, X.H. Ning, Y.F. Zang, Q.G. Cao, Y.N. An, Z.S. (2005). δ13 variation of C3 and C4 plants across an Asian monsoon rainfall gradient in arid northwestern China. Global Change Biology 11, 10941100.Google Scholar
Löwemark, L. Chen, H.-F. Yang, T.-N. Kylander, M. Yu, E.-F. Hsu, Y.-W. Lee, T.-Q. Song, S.-R. Jarvis, S. (2011). Normalizing XRF-scanner data: a cautionary note on the interpretation of high-resolution records from organic-rich lakes. Journal of Asian Earth Sciences 40, 12501256.CrossRefGoogle Scholar
Maher, B.A. (1998). Magnetic properties of modern soils and Quaternary loessic paleosols: paleoclimatic implications. Palaeogeography, Palaeoclimatology, Palaeoecology 137, 2554.CrossRefGoogle Scholar
Maher, B.A. (2008). Holocene variability of the East Asian summer monsoon from Chinese cave records: a re-assessment. The Holocene 18, 861866.CrossRefGoogle Scholar
Meyers, P.A. (1994). Preservation of elemental and isotopic source identification of sedimentary organic matter. Chemical Geology 114, 289302.CrossRefGoogle Scholar
Meyers, P.A. (1997). Organic geochemical proxies of paleoceanographic, paleolimnologic, and paleoclimatic presesses. Organic Geochemistry 27, 213250.CrossRefGoogle Scholar
Nahm, W.H. Kim, J.Y. Lim, J. Yu, K.M. (2011). Responses of the upriver valley sediment to Holocene environmental changes in the Paju area of Korea. Geomorphology 133, 8089.CrossRefGoogle Scholar
Nahm, W.-H. Kim, J.K. Kim, J.-Y. Yi, S. Lim, J. Kim, J.C. (2013). The Holocene climatic optimum in Korea: evidence from wetland records. Palaeogeography, Palaeoclimatology, Palaeoecology 376, 163171.CrossRefGoogle Scholar
Nordt, L.C. Boutton, T.W. Jacob, J.S. Mandel, R.D. (2002). C4 plant productivity and climate–CO2 variations in South-Central Texas during the late Quaternary. Quaternary Research 58, 182188.CrossRefGoogle Scholar
O'Leary, M.H. (1981). Carbon isotope fractionation in plants. Phytochemistry 20, 553567.CrossRefGoogle Scholar
O'Leary, M.H. (1988). Carbon isotopes in photosynthesis. Bioscience 38, 328335.CrossRefGoogle Scholar
Porter, S.C. An, Z.S. (1995). Correlation between climate events in the North Atlantic and China during the last glaciation. Nature 375, 305308.CrossRefGoogle Scholar
Porter, S.C. Zhou, W.J. (2006). Synchonism of Holocene East Asian monsoon variations and North Atlantic drift-ice tracers. Quaternary Research 65, 443449.CrossRefGoogle Scholar
Qiang, M. Liu, Y. Jin, Y. Song, L. Huang, X. Chen, F. (2014). Holocene record of eolian activity from Genggahai Lake, northeastern Qinghai-Tibetan Plateau, China. Geophysical Research Letters 41, 589595. http://dx.doi.org/10.1002/2013GL058806CrossRefGoogle Scholar
Sukumar, R. Ramesh, R. Pant, R.K. Rajagopalan, G. (1993). A δ13C record of late Quaternary climate change from tropical peats in southern India. Nature 364, 703706.CrossRefGoogle Scholar
Tieszen, L.L. (1991). Natural variations in the carbon isotope values of plants: implications for archaeology, ecology, and paleoecology. Journal of Archaeological Science 18, 227248.CrossRefGoogle Scholar
Vidic, N.J. Montañez, I.P. (2004). Climatically driven glacial–interglacial variation in C3 and C4 plant proportions in the Chinese Loess Plateau. Geology 32, 337340.CrossRefGoogle Scholar
Wang, Y. Cheng, H. Edwards, R.L. He, Y. Kong, X. An, Z. Wu, J. Kelly, M.J. Dykoski, C.A. Li, X. (2005). The Holocene Asian Monsoon: links to solar changes and North Atlantic climate. Science 308, 854857.CrossRefGoogle ScholarPubMed
Xiao, J.L. Poter, S.C. An, Z.S. Kumai, H. Yoshikawa, S. (1995). Grain size of quartz as an indicator winter monsoon strength on the Loess Plateau of central China during the last 130,000 yrs. Quaternary Research 43, 2229.CrossRefGoogle Scholar
Xiao, J.L. Inouchi, I. Kumai, H. Yoshikawa, S. Kondo, Y. Liu, T.S. An, Z.S. (1997). Eolian quartz flux to Lake Biwa, central Japan, over the past 145,000 years. Quaternary Research 48, 4857.CrossRefGoogle Scholar
Xiao, J.L. Xu, Q. Nakamura, T. Yang, X. Liang, W. Inouchi, Y. (2004). Holocene vegetation variation in the Daihai Lake region of north-central China: a direct indication of the Asian monsoon climatic history. Quaternary Science Reviews 23, 16691679.CrossRefGoogle Scholar
Xiao, J.L. Wu, J.T. Si, B. Liang, W.D. Nakamura, T. Liu, B.L. Inouchi, Y. (2006). Holocene climate changes in the monsoon/arid transition reflected by carbon concentration in Daihai Lake of Inner Mongolia. The Holocene 16, 551560.CrossRefGoogle Scholar
Xiao, J.L. Si, B. Zhai, D.Y. Itoh, S. Lomtatidze, Z. (2008). Hydrology of Dali Lake in central-eastern Inner Mongolia and Holocene East Asian monsoon variability. Journal of Paleolimnology 40, 519528.CrossRefGoogle Scholar
Xiao, J.L. Chang, Z. Wen, R. Zhai, D. Itoh, S. Lomtatidze, Z. (2009). Holocene weak monsoon intervals indicated by low lake levels at Hulun Lake in the monsoonal margin region of northeastern Inner Mongolia, China. The Holocene 19, 6 899908.CrossRefGoogle Scholar
Xue, J. Zong, W. Cao, J. (2014). Changes in C3 and C4 plant abundances reflect climate changes from 41,000 to 10,000 yr ago in northern Leizhou Peninsula, South China. Palaeogeography, Palaeoclimatology, Palaeoecology 396, 173182.CrossRefGoogle Scholar
Yang, D.Y. Kim, J.-Y. Nahm, W.-H. Ryu, E. Yi, S. Kim, J.C. Lee, J.-Y. Kim, J.-K. (2008). Holocene wetland environmental change based on major element concentrations and organic contents from the Cheollipo coast, Korea. Quaternary International 176–177, 143155.CrossRefGoogle Scholar
Yi, S. Saito, Y. Zhao, Q. Wang, P. (2003). Vegetation and climate changes in the Changjiang (Yangtze River) Delta, China, during the past 13,000 years inferred from pollen records. Quaternary Science Reviews 22, 15011519.CrossRefGoogle Scholar
Yi, S. Kim, J.Y. Yang, D.Y. Oh, K.C. Hong, S.S. (2008). Mid- and Late-Holocene palynofloral and environmental change of Korean central region. Quaternary International 176–177, 112120.CrossRefGoogle Scholar
Zhong, W. Xue, J. Zheng, Y. Ouyang, J. Ma, Q. Cai, Y. Tang, X. (2010). Climatic changes since the last deglaciation inferred from a lacustrine sedimentary sequence in the eastern Nanling Mountains, south China. Journal of Quaternary Science 25, 975984.CrossRefGoogle Scholar